ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.13799
  4. Cited By
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
  Robust AutoDL

Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL

24 June 2020
Lucas Zimmer
Marius Lindauer
Frank Hutter
    MU
ArXivPDFHTML

Papers citing "Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL"

19 / 19 papers shown
Title
One Search Fits All: Pareto-Optimal Eco-Friendly Model Selection
One Search Fits All: Pareto-Optimal Eco-Friendly Model Selection
Filippo Betello
Antonio Purificato
Vittoria Vineis
Gabriele Tolomei
Fabrizio Silvestri
34
0
0
02 May 2025
Scaling Gaussian Processes for Learning Curve Prediction via Latent
  Kronecker Structure
Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
E. Bakshy
BDL
29
2
0
11 Oct 2024
AutoMMLab: Automatically Generating Deployable Models from Language
  Instructions for Computer Vision Tasks
AutoMMLab: Automatically Generating Deployable Models from Language Instructions for Computer Vision Tasks
Zekang Yang
Wang Zeng
Sheng Jin
Chao Qian
Ping Luo
Wentao Liu
MLLM
VLM
51
8
0
23 Feb 2024
Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted
  Networks
Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks
Steven Adriaensen
Herilalaina Rakotoarison
Samuel G. Müller
Frank Hutter
BDL
26
19
0
31 Oct 2023
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc
  Ensemble Selection in AutoML
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML
Lennart Purucker
Lennart Schneider
Marie Anastacio
Joeran Beel
B. Bischl
Holger Hoos
26
4
0
17 Jul 2023
Which is the best model for my data?
Which is the best model for my data?
Gonzalo Nápoles
Isel Grau
Çiçek Güven
Orçun Özdemir
Yamisleydi Salgueiro
19
0
0
26 Oct 2022
Efficient Methods for Natural Language Processing: A Survey
Efficient Methods for Natural Language Processing: A Survey
Marcos Vinícius Treviso
Ji-Ung Lee
Tianchu Ji
Betty van Aken
Qingqing Cao
...
Emma Strubell
Niranjan Balasubramanian
Leon Derczynski
Iryna Gurevych
Roy Schwartz
28
109
0
31 Aug 2022
A Survey of Open Source Automation Tools for Data Science Predictions
A Survey of Open Source Automation Tools for Data Science Predictions
Nicholas Hoell
20
0
0
24 Aug 2022
AMLB: an AutoML Benchmark
AMLB: an AutoML Benchmark
Pieter Gijsbers
Marcos L. P. Bueno
Stefan Coors
E. LeDell
Sébastien Poirier
Janek Thomas
B. Bischl
Joaquin Vanschoren
30
53
0
25 Jul 2022
Efficient Automated Deep Learning for Time Series Forecasting
Efficient Automated Deep Learning for Time Series Forecasting
Difan Deng
Florian Karl
Frank Hutter
Bernd Bischl
Marius Lindauer
AI4TS
30
16
0
11 May 2022
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
25
26
0
16 Dec 2021
Explaining Hyperparameter Optimization via Partial Dependence Plots
Explaining Hyperparameter Optimization via Partial Dependence Plots
Julia Moosbauer
J. Herbinger
Giuseppe Casalicchio
Marius Lindauer
Bernd Bischl
47
56
0
08 Nov 2021
Automatic Componentwise Boosting: An Interpretable AutoML System
Automatic Componentwise Boosting: An Interpretable AutoML System
Stefan Coors
Daniel Schalk
B. Bischl
David Rügamer
TPM
30
3
0
12 Sep 2021
LightAutoML: AutoML Solution for a Large Financial Services Ecosystem
LightAutoML: AutoML Solution for a Large Financial Services Ecosystem
Anton Vakhrushev
A. Ryzhkov
M. Savchenko
Dmitry Simakov
Rinchin Damdinov
Alexander Tuzhilin
6
33
0
03 Sep 2021
Productivity, Portability, Performance: Data-Centric Python
Productivity, Portability, Performance: Data-Centric Python
Yiheng Wang
Yao Zhang
Yanzhang Wang
Yan Wan
Jiao Wang
Zhongyuan Wu
Yuhao Yang
Bowen She
52
94
0
01 Jul 2021
Bag of Baselines for Multi-objective Joint Neural Architecture Search
  and Hyperparameter Optimization
Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization
Julia Guerrero-Viu
Sven Hauns
Sergio Izquierdo
Guilherme Miotto
Simon Schrodi
André Biedenkapp
T. Elsken
Difan Deng
Marius Lindauer
Frank Hutter
AI4CE
17
25
0
03 May 2021
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
89
607
0
13 Mar 2020
NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural
  Architecture Search
NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural Architecture Search
Arber Zela
Julien N. Siems
Frank Hutter
82
147
0
28 Jan 2020
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
264
5,326
0
05 Nov 2016
1