ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.15350
  4. Cited By
MiniNet: An extremely lightweight convolutional neural network for
  real-time unsupervised monocular depth estimation

MiniNet: An extremely lightweight convolutional neural network for real-time unsupervised monocular depth estimation

27 June 2020
Jun Liu
Qing Li
Rui Cao
Wenming Tang
Guoping Qiu
    MDE
ArXivPDFHTML

Papers citing "MiniNet: An extremely lightweight convolutional neural network for real-time unsupervised monocular depth estimation"

2 / 2 papers shown
Title
CCDepth: A Lightweight Self-supervised Depth Estimation Network with
  Enhanced Interpretability
CCDepth: A Lightweight Self-supervised Depth Estimation Network with Enhanced Interpretability
Xi Zhang
Yaru Xue
Shaocheng Jia
Xin Pei
33
0
0
30 Sep 2024
Deep Ordinal Regression Network for Monocular Depth Estimation
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Biwei Huang
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
200
1,708
0
06 Jun 2018
1