Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.01138
Cited By
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating a class of inverse problems for PDEs
29 June 2020
Siddhartha Mishra
Roberto Molinaro
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating a class of inverse problems for PDEs"
26 / 26 papers shown
Title
Astral: training physics-informed neural networks with error majorants
V. Fanaskov
Tianchi Yu
Alexander Rudikov
Ivan V. Oseledets
33
1
0
04 Jun 2024
Characterization of partial wetting by CMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs
Elham Kiyani
M. Kooshkbaghi
K. Shukla
R. Koneru
Zhen Li
L. Bravo
A. Ghoshal
George Karniadakis
M. Karttunen
AI4CE
37
4
0
18 Jul 2023
Auxiliary-Tasks Learning for Physics-Informed Neural Network-Based Partial Differential Equations Solving
Junjun Yan
Xinhai Chen
Zhichao Wang
Enqiang Zhou
Jie Liu
PINN
AI4CE
26
1
0
12 Jul 2023
A Deep Learning Framework for Solving Hyperbolic Partial Differential Equations: Part I
Rajat Arora
PINN
AI4CE
22
1
0
09 Jul 2023
A Survey on Solving and Discovering Differential Equations Using Deep Neural Networks
Hyeonjung Jung
Jung
Jayant Gupta
B. Jayaprakash
Matthew J. Eagon
Harish Selvam
Carl Molnar
W. Northrop
Shashi Shekhar
AI4CE
35
5
0
26 Apr 2023
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
29
20
0
03 Mar 2023
h-analysis and data-parallel physics-informed neural networks
Paul Escapil-Inchauspé
G. A. Ruz
PINN
AI4CE
27
2
0
17 Feb 2023
Neural tangent kernel analysis of PINN for advection-diffusion equation
M. Saadat
B. Gjorgiev
L. Das
G. Sansavini
25
0
0
21 Nov 2022
Physics-informed neural networks for operator equations with stochastic data
Paul Escapil-Inchauspé
G. A. Ruz
26
2
0
15 Nov 2022
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
24
17
0
27 Oct 2022
A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High Level Accuracy and Efficiency
Weilong Guan
Kai-Ping Yang
Yinsheng Chen
Zhong Guan
PINN
AI4CE
18
12
0
19 Oct 2022
Physics-Informed Neural Networks for Shell Structures
Jan-Hendrik Bastek
D. Kochmann
AI4CE
14
51
0
26 Jul 2022
Revisiting PINNs: Generative Adversarial Physics-informed Neural Networks and Point-weighting Method
Wensheng Li
Chao Zhang
Chuncheng Wang
Hanting Guan
Dacheng Tao
DiffM
PINN
14
12
0
18 May 2022
Self-scalable Tanh (Stan): Faster Convergence and Better Generalization in Physics-informed Neural Networks
Raghav Gnanasambandam
Bo Shen
Jihoon Chung
Xubo Yue
Zhenyu
Zhen Kong
LRM
32
12
0
26 Apr 2022
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
27
115
0
17 Mar 2022
Physics-informed neural networks for inverse problems in supersonic flows
Ameya Dilip Jagtap
Zhiping Mao
Nikolaus Adams
George Karniadakis
PINN
18
201
0
23 Feb 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,179
0
14 Jan 2022
Improved architectures and training algorithms for deep operator networks
Sifan Wang
Hanwen Wang
P. Perdikaris
AI4CE
49
105
0
04 Oct 2021
NeuFENet: Neural Finite Element Solutions with Theoretical Bounds for Parametric PDEs
Biswajit Khara
Aditya Balu
Ameya Joshi
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
24
19
0
04 Oct 2021
An artificial neural network approach to bifurcating phenomena in computational fluid dynamics
F. Pichi
F. Ballarin
G. Rozza
J. Hesthaven
AI4CE
20
71
0
22 Sep 2021
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
35
28
0
30 Aug 2021
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
11
100
0
28 Jun 2021
A Priori Generalization Error Analysis of Two-Layer Neural Networks for Solving High Dimensional Schrödinger Eigenvalue Problems
Jianfeng Lu
Yulong Lu
31
29
0
04 May 2021
A Deep Learning approach to Reduced Order Modelling of Parameter Dependent Partial Differential Equations
N. R. Franco
Andrea Manzoni
P. Zunino
18
45
0
10 Mar 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
180
759
0
13 Mar 2020
1