Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.02617
Cited By
Understanding and Improving Fast Adversarial Training
6 July 2020
Maksym Andriushchenko
Nicolas Flammarion
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding and Improving Fast Adversarial Training"
50 / 61 papers shown
Title
Standard-Deviation-Inspired Regularization for Improving Adversarial Robustness
Olukorede Fakorede
Modeste Atsague
Jin Tian
AAML
37
0
0
31 Dec 2024
On Using Certified Training towards Empirical Robustness
Alessandro De Palma
Serge Durand
Zakaria Chihani
François Terrier
Caterina Urban
OOD
AAML
33
1
0
02 Oct 2024
On the Robustness of Kolmogorov-Arnold Networks: An Adversarial Perspective
Tal Alter
Raz Lapid
Moshe Sipper
AAML
56
6
0
25 Aug 2024
Mitigating Low-Frequency Bias: Feature Recalibration and Frequency Attention Regularization for Adversarial Robustness
Kejia Zhang
Juanjuan Weng
Yuanzheng Cai
Zhiming Luo
Shaozi Li
AAML
59
0
0
04 Jul 2024
One Noise to Rule Them All: Multi-View Adversarial Attacks with Universal Perturbation
Mehmet Ergezer
Phat Duong
Christian Green
Tommy Nguyen
Abdurrahman Zeybey
AAML
26
2
0
02 Apr 2024
Robust Overfitting Does Matter: Test-Time Adversarial Purification With FGSM
Linyu Tang
Lei Zhang
AAML
29
3
0
18 Mar 2024
Catastrophic Overfitting: A Potential Blessing in Disguise
Mengnan Zhao
Lihe Zhang
Yuqiu Kong
Baocai Yin
AAML
41
1
0
28 Feb 2024
Unleashing the Power of Imbalanced Modality Information for Multi-modal Knowledge Graph Completion
Yichi Zhang
Zhuo Chen
Lei Liang
Hua-zeng Chen
Wen Zhang
51
4
0
22 Feb 2024
SecurityNet: Assessing Machine Learning Vulnerabilities on Public Models
Boyang Zhang
Zheng Li
Ziqing Yang
Xinlei He
Michael Backes
Mario Fritz
Yang Zhang
26
4
0
19 Oct 2023
On the Over-Memorization During Natural, Robust and Catastrophic Overfitting
Runqi Lin
Chaojian Yu
Bo Han
Tongliang Liu
22
7
0
13 Oct 2023
Generating Less Certain Adversarial Examples Improves Robust Generalization
Minxing Zhang
Michael Backes
Xiao Zhang
AAML
40
1
0
06 Oct 2023
Improving Machine Learning Robustness via Adversarial Training
Long Dang
T. Hapuarachchi
Kaiqi Xiong
Jing Lin
OOD
AAML
30
2
0
22 Sep 2023
Robust Mixture-of-Expert Training for Convolutional Neural Networks
Yihua Zhang
Ruisi Cai
Tianlong Chen
Guanhua Zhang
Huan Zhang
Pin-Yu Chen
Shiyu Chang
Zhangyang Wang
Sijia Liu
MoE
AAML
OOD
32
16
0
19 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
33
2
0
01 Aug 2023
Group-based Robustness: A General Framework for Customized Robustness in the Real World
Weiran Lin
Keane Lucas
Neo Eyal
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
OOD
AAML
22
1
0
29 Jun 2023
Releasing Inequality Phenomena in
L
∞
L_{\infty}
L
∞
-Adversarial Training via Input Gradient Distillation
Junxi Chen
Junhao Dong
Xiaohua Xie
AAML
16
0
0
16 May 2023
Exploiting Frequency Spectrum of Adversarial Images for General Robustness
Chun Yang Tan
K. Kawamoto
Hiroshi Kera
AAML
OOD
26
1
0
15 May 2023
PRISE: Demystifying Deep Lucas-Kanade with Strongly Star-Convex Constraints for Multimodel Image Alignment
Yiqing Zhang
Xinming Huang
Ziming Zhang
34
4
0
21 Mar 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min-Bin Lin
Weiwei Liu
Shuicheng Yan
DiffM
18
207
0
09 Feb 2023
Towards Adversarial Realism and Robust Learning for IoT Intrusion Detection and Classification
João Vitorino
Isabel Praça
Eva Maia
AAML
29
28
0
30 Jan 2023
Data Augmentation Alone Can Improve Adversarial Training
Lin Li
Michael W. Spratling
16
50
0
24 Jan 2023
Explainability and Robustness of Deep Visual Classification Models
Jindong Gu
AAML
39
2
0
03 Jan 2023
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
27
5
0
15 Dec 2022
REAP: A Large-Scale Realistic Adversarial Patch Benchmark
Nabeel Hingun
Chawin Sitawarin
Jerry Li
David A. Wagner
AAML
29
14
0
12 Dec 2022
Towards More Robust Interpretation via Local Gradient Alignment
Sunghwan Joo
Seokhyeon Jeong
Juyeon Heo
Adrian Weller
Taesup Moon
FAtt
25
5
0
29 Nov 2022
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
28
24
0
12 Oct 2022
Bag of Tricks for FGSM Adversarial Training
Zichao Li
Li Liu
Zeyu Wang
Yuyin Zhou
Cihang Xie
AAML
23
6
0
06 Sep 2022
Adversarial Vulnerability of Temporal Feature Networks for Object Detection
Svetlana Pavlitskaya
Nikolai Polley
Michael Weber
J. Marius Zöllner
AAML
14
2
0
23 Aug 2022
Enhancing Diffusion-Based Image Synthesis with Robust Classifier Guidance
Bahjat Kawar
Roy Ganz
Michael Elad
DiffM
21
38
0
18 Aug 2022
Towards Efficient Adversarial Training on Vision Transformers
Boxi Wu
Jindong Gu
Zhifeng Li
Deng Cai
Xiaofei He
Wei Liu
ViT
AAML
35
37
0
21 Jul 2022
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale
Gaoyuan Zhang
Songtao Lu
Yihua Zhang
Xiangyi Chen
Pin-Yu Chen
Quanfu Fan
Lee Martie
L. Horesh
Min-Fong Hong
Sijia Liu
OOD
24
12
0
13 Jun 2022
How Does Frequency Bias Affect the Robustness of Neural Image Classifiers against Common Corruption and Adversarial Perturbations?
Alvin Chan
Yew-Soon Ong
Clement Tan
AAML
22
13
0
09 May 2022
CE-based white-box adversarial attacks will not work using super-fitting
Youhuan Yang
Lei Sun
Leyu Dai
Song Guo
Xiuqing Mao
Xiaoqin Wang
Bayi Xu
AAML
24
0
0
04 May 2022
Fast AdvProp
Jieru Mei
Yucheng Han
Yutong Bai
Yixiao Zhang
Yingwei Li
Xianhang Li
Alan Yuille
Cihang Xie
AAML
24
8
0
21 Apr 2022
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
30
15
0
05 Apr 2022
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
49
71
0
26 Mar 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
Semi-Implicit Hybrid Gradient Methods with Application to Adversarial Robustness
Beomsu Kim
Junghoon Seo
AAML
20
0
0
21 Feb 2022
The Adversarial Security Mitigations of mmWave Beamforming Prediction Models using Defensive Distillation and Adversarial Retraining
Murat Kuzlu
Ferhat Ozgur Catak
Umit Cali
Evren Çatak
Ozgur Guler
AAML
24
9
0
16 Feb 2022
Random Walks for Adversarial Meshes
Amir Belder
Gal Yefet
Ran Ben Izhak
A. Tal
AAML
25
2
0
15 Feb 2022
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Mohammad Khalooei
M. Homayounpour
M. Amirmazlaghani
AAML
17
3
0
05 Feb 2022
Scale-Invariant Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Mengting Xu
Tao Zhang
Zhongnian Li
Daoqiang Zhang
AAML
30
1
0
29 Jan 2022
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
192
345
0
15 Dec 2021
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
36
56
0
24 Nov 2021
Robust and Accurate Object Detection via Self-Knowledge Distillation
Weipeng Xu
Pengzhi Chu
Renhao Xie
Xiongziyan Xiao
Hongcheng Huang
AAML
ObjD
19
4
0
14 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
24
14
0
02 Nov 2021
BulletTrain: Accelerating Robust Neural Network Training via Boundary Example Mining
Weizhe Hua
Yichi Zhang
Chuan Guo
Zhiru Zhang
G. E. Suh
OOD
39
15
0
29 Sep 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
30
16
0
20 Sep 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
RobustNav: Towards Benchmarking Robustness in Embodied Navigation
Prithvijit Chattopadhyay
Judy Hoffman
Roozbeh Mottaghi
Aniruddha Kembhavi
18
55
0
08 Jun 2021
1
2
Next