ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.04202
  4. Cited By
Stochastic Hamiltonian Gradient Methods for Smooth Games

Stochastic Hamiltonian Gradient Methods for Smooth Games

8 July 2020
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
ArXivPDFHTML

Papers citing "Stochastic Hamiltonian Gradient Methods for Smooth Games"

33 / 33 papers shown
Title
Sharpness-Aware Minimization: General Analysis and Improved Rates
Dimitris Oikonomou
Nicolas Loizou
63
0
0
04 Mar 2025
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
50
6
0
28 Jan 2025
Towards Sharper Risk Bounds for Minimax Problems
Towards Sharper Risk Bounds for Minimax Problems
Bowei Zhu
Shaojie Li
Yong Liu
23
0
0
11 Oct 2024
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
45
4
0
06 Jun 2024
Stochastic Extragradient with Random Reshuffling: Improved Convergence
  for Variational Inequalities
Stochastic Extragradient with Random Reshuffling: Improved Convergence for Variational Inequalities
Konstantinos Emmanouilidis
René Vidal
Nicolas Loizou
27
2
0
11 Mar 2024
Stochastic Smoothed Gradient Descent Ascent for Federated Minimax
  Optimization
Stochastic Smoothed Gradient Descent Ascent for Federated Minimax Optimization
Wei Shen
Minhui Huang
Jiawei Zhang
Cong Shen
FedML
33
0
0
02 Nov 2023
Stochastic Methods in Variational Inequalities: Ergodicity, Bias and
  Refinements
Stochastic Methods in Variational Inequalities: Ergodicity, Bias and Refinements
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Angeliki Giannou
Yudong Chen
Qiaomin Xie
19
4
0
28 Jun 2023
Communication-Efficient Gradient Descent-Accent Methods for Distributed
  Variational Inequalities: Unified Analysis and Local Updates
Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
Siqi Zhang
S. Choudhury
Sebastian U. Stich
Nicolas Loizou
FedML
11
3
0
08 Jun 2023
Single-Call Stochastic Extragradient Methods for Structured Non-monotone
  Variational Inequalities: Improved Analysis under Weaker Conditions
Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions
S. Choudhury
Eduard A. Gorbunov
Nicolas Loizou
25
13
0
27 Feb 2023
Solving stochastic weak Minty variational inequalities without
  increasing batch size
Solving stochastic weak Minty variational inequalities without increasing batch size
Thomas Pethick
Olivier Fercoq
P. Latafat
Panagiotis Patrinos
V. Cevher
8
23
0
17 Feb 2023
Tight Analysis of Extra-gradient and Optimistic Gradient Methods For
  Nonconvex Minimax Problems
Tight Analysis of Extra-gradient and Optimistic Gradient Methods For Nonconvex Minimax Problems
Pouria Mahdavinia
Yuyang Deng
Haochuan Li
M. Mahdavi
18
12
0
17 Oct 2022
Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization
Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization
S. Du
Gauthier Gidel
Michael I. Jordan
C. J. Li
21
7
0
17 Jun 2022
Clipped Stochastic Methods for Variational Inequalities with
  Heavy-Tailed Noise
Clipped Stochastic Methods for Variational Inequalities with Heavy-Tailed Noise
Eduard A. Gorbunov
Marina Danilova
David Dobre
Pavel Dvurechensky
Alexander Gasnikov
Gauthier Gidel
19
24
0
02 Jun 2022
Riemannian Hamiltonian methods for min-max optimization on manifolds
Riemannian Hamiltonian methods for min-max optimization on manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Pawan Kumar
Junbin Gao
17
16
0
25 Apr 2022
Stability and Generalization of Differentially Private Minimax Problems
Stability and Generalization of Differentially Private Minimax Problems
Yilin Kang
Yong Liu
Jian Li
Weiping Wang
11
3
0
11 Apr 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient
  Methods
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
17
47
0
15 Feb 2022
Last-Iterate Convergence of Saddle-Point Optimizers via High-Resolution
  Differential Equations
Last-Iterate Convergence of Saddle-Point Optimizers via High-Resolution Differential Equations
Tatjana Chavdarova
Michael I. Jordan
Manolis Zampetakis
11
15
0
27 Dec 2021
Convergence Rates of Two-Time-Scale Gradient Descent-Ascent Dynamics for
  Solving Nonconvex Min-Max Problems
Convergence Rates of Two-Time-Scale Gradient Descent-Ascent Dynamics for Solving Nonconvex Min-Max Problems
Thinh T. Doan
11
15
0
17 Dec 2021
Faster Single-loop Algorithms for Minimax Optimization without Strong
  Concavity
Faster Single-loop Algorithms for Minimax Optimization without Strong Concavity
Junchi Yang
Antonio Orvieto
Aurélien Lucchi
Niao He
6
59
0
10 Dec 2021
Stochastic Extragradient: General Analysis and Improved Rates
Stochastic Extragradient: General Analysis and Improved Rates
Eduard A. Gorbunov
Hugo Berard
Gauthier Gidel
Nicolas Loizou
14
40
0
16 Nov 2021
Extragradient Method: $O(1/K)$ Last-Iterate Convergence for Monotone
  Variational Inequalities and Connections With Cocoercivity
Extragradient Method: O(1/K)O(1/K)O(1/K) Last-Iterate Convergence for Monotone Variational Inequalities and Connections With Cocoercivity
Eduard A. Gorbunov
Nicolas Loizou
Gauthier Gidel
15
64
0
08 Oct 2021
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
  Games: Convergence Analysis under Expected Co-coercivity
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity
Nicolas Loizou
Hugo Berard
Gauthier Gidel
Ioannis Mitliagkas
Simon Lacoste-Julien
13
53
0
30 Jun 2021
On the Convergence of Stochastic Extragradient for Bilinear Games using
  Restarted Iteration Averaging
On the Convergence of Stochastic Extragradient for Bilinear Games using Restarted Iteration Averaging
C. J. Li
Yaodong Yu
Nicolas Loizou
Gauthier Gidel
Yi-An Ma
Nicolas Le Roux
Michael I. Jordan
15
22
0
30 Jun 2021
Stability and Generalization of Stochastic Gradient Methods for Minimax
  Problems
Stability and Generalization of Stochastic Gradient Methods for Minimax Problems
Yunwen Lei
Zhenhuan Yang
Tianbao Yang
Yiming Ying
12
47
0
08 May 2021
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods
Zheng Shi
Abdurakhmon Sadiev
Nicolas Loizou
Peter Richtárik
Martin Takávc
ODL
22
13
0
19 Feb 2021
Complex Momentum for Optimization in Games
Complex Momentum for Optimization in Games
Jonathan Lorraine
David Acuna
Paul Vicol
D. Duvenaud
10
9
0
16 Feb 2021
LEAD: Min-Max Optimization from a Physical Perspective
LEAD: Min-Max Optimization from a Physical Perspective
Reyhane Askari Hemmat
Amartya Mitra
Guillaume Lajoie
Ioannis Mitliagkas
15
0
0
26 Oct 2020
Tight last-iterate convergence rates for no-regret learning in
  multi-player games
Tight last-iterate convergence rates for no-regret learning in multi-player games
Noah Golowich
S. Pattathil
C. Daskalakis
41
80
0
26 Oct 2020
Average-case Acceleration for Bilinear Games and Normal Matrices
Average-case Acceleration for Bilinear Games and Normal Matrices
Carles Domingo-Enrich
Fabian Pedregosa
Damien Scieur
6
7
0
05 Oct 2020
Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax
  Problems
Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax Problems
Quoc Tran-Dinh
Deyi Liu
Lam M. Nguyen
6
13
0
27 Jun 2020
Explore Aggressively, Update Conservatively: Stochastic Extragradient
  Methods with Variable Stepsize Scaling
Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling
Yu-Guan Hsieh
F. Iutzeler
J. Malick
P. Mertikopoulos
7
68
0
23 Mar 2020
On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach
On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach
Yuanhao Wang
Guodong Zhang
Jimmy Ba
29
99
0
16 Oct 2019
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
119
1,190
0
16 Aug 2016
1