Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.05384
Cited By
Deep neural network approximation for high-dimensional elliptic PDEs with boundary conditions
10 July 2020
Philipp Grohs
L. Herrmann
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep neural network approximation for high-dimensional elliptic PDEs with boundary conditions"
21 / 21 papers shown
Title
From Equations to Insights: Unraveling Symbolic Structures in PDEs with LLMs
Rohan Bhatnagar
Ling Liang
Krish Patel
Haizhao Yang
36
0
0
13 Mar 2025
Sampling Complexity of Deep Approximation Spaces
Ahmed Abdeljawad
Philipp Grohs
26
1
0
20 Dec 2023
Residual Multi-Fidelity Neural Network Computing
Owen Davis
Mohammad Motamed
Raúl Tempone
37
1
0
05 Oct 2023
A numerical approach for the fractional Laplacian via deep neural networks
Nicolás Valenzuela
29
3
0
30 Aug 2023
Theoretical guarantees for neural control variates in MCMC
Denis Belomestny
Artur Goldman
A. Naumov
S. Samsonov
BDL
DRL
13
6
0
03 Apr 2023
Multilevel CNNs for Parametric PDEs
Cosmas Heiß
Ingo Gühring
Martin Eigel
AI4CE
17
8
0
01 Apr 2023
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
Tanya Marwah
Zachary Chase Lipton
Jianfeng Lu
Andrej Risteski
49
10
0
21 Oct 2022
From Monte Carlo to neural networks approximations of boundary value problems
L. Beznea
Iulian Cîmpean
Oana Lupascu-Stamate
Ionel Popescu
A. Zarnescu
14
1
0
03 Sep 2022
Robust SDE-Based Variational Formulations for Solving Linear PDEs via Deep Learning
Lorenz Richter
Julius Berner
19
19
0
21 Jun 2022
Compressive Fourier collocation methods for high-dimensional diffusion equations with periodic boundary conditions
Weiqi Wang
Simone Brugiapaglia
19
2
0
02 Jun 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Yiping Lu
Jose H. Blanchet
Lexing Ying
35
7
0
15 May 2022
FinNet: Solving Time-Independent Differential Equations with Finite Difference Neural Network
Son N. T. Tu
Thu Nguyen
AI4CE
13
0
0
18 Feb 2022
Exponential Convergence of Deep Operator Networks for Elliptic Partial Differential Equations
C. Marcati
Christoph Schwab
14
38
0
15 Dec 2021
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems
Nikolas Nusken
Lorenz Richter
PINN
DiffM
31
27
0
07 Dec 2021
Approximation properties of Residual Neural Networks for Kolmogorov PDEs
Jonas Baggenstos
Diyora Salimova
15
3
0
30 Oct 2021
On the Representation of Solutions to Elliptic PDEs in Barron Spaces
Ziang Chen
Jianfeng Lu
Yulong Lu
32
26
0
14 Jun 2021
Deep neural network approximation for high-dimensional parabolic Hamilton-Jacobi-Bellman equations
Philipp Grohs
L. Herrmann
9
6
0
09 Mar 2021
Parametric Complexity Bounds for Approximating PDEs with Neural Networks
Tanya Marwah
Zachary Chase Lipton
Andrej Risteski
20
19
0
03 Mar 2021
Quantitative approximation results for complex-valued neural networks
A. Caragea
D. Lee
J. Maly
G. Pfander
F. Voigtlaender
13
5
0
25 Feb 2021
Approximations with deep neural networks in Sobolev time-space
Ahmed Abdeljawad
Philipp Grohs
16
12
0
23 Dec 2020
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
1