Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.06011
Cited By
v1
v2
v3
v4 (latest)
Explaining the data or explaining a model? Shapley values that uncover non-linear dependencies
12 July 2020
D. Fryer
Inga Strümke
Hien Nguyen
TDI
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Explaining the data or explaining a model? Shapley values that uncover non-linear dependencies"
4 / 4 papers shown
Title
GECOBench: A Gender-Controlled Text Dataset and Benchmark for Quantifying Biases in Explanations
Rick Wilming
Artur Dox
Hjalmar Schulz
Marta Oliveira
Benedict Clark
Stefan Haufe
100
2
0
17 Jun 2024
Beyond Cuts in Small Signal Scenarios -- Enhanced Sneutrino Detectability Using Machine Learning
Daniel Alvestad
N. Fomin
Jörn Kersten
S. Maeland
Inga Strümke
61
11
0
06 Aug 2021
Shapley values for feature selection: The good, the bad, and the axioms
D. Fryer
Inga Strümke
Hien Nguyen
FAtt
TDI
105
205
0
22 Feb 2021
Towards interpreting ML-based automated malware detection models: a survey
Yuzhou Lin
Xiaolin Chang
119
7
0
15 Jan 2021
1