ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.06011
  4. Cited By
Explaining the data or explaining a model? Shapley values that uncover
  non-linear dependencies
v1v2v3v4 (latest)

Explaining the data or explaining a model? Shapley values that uncover non-linear dependencies

12 July 2020
D. Fryer
Inga Strümke
Hien Nguyen
    TDIFAtt
ArXiv (abs)PDFHTML

Papers citing "Explaining the data or explaining a model? Shapley values that uncover non-linear dependencies"

4 / 4 papers shown
Title
GECOBench: A Gender-Controlled Text Dataset and Benchmark for
  Quantifying Biases in Explanations
GECOBench: A Gender-Controlled Text Dataset and Benchmark for Quantifying Biases in Explanations
Rick Wilming
Artur Dox
Hjalmar Schulz
Marta Oliveira
Benedict Clark
Stefan Haufe
100
2
0
17 Jun 2024
Beyond Cuts in Small Signal Scenarios -- Enhanced Sneutrino
  Detectability Using Machine Learning
Beyond Cuts in Small Signal Scenarios -- Enhanced Sneutrino Detectability Using Machine Learning
Daniel Alvestad
N. Fomin
Jörn Kersten
S. Maeland
Inga Strümke
61
11
0
06 Aug 2021
Shapley values for feature selection: The good, the bad, and the axioms
Shapley values for feature selection: The good, the bad, and the axioms
D. Fryer
Inga Strümke
Hien Nguyen
FAttTDI
105
205
0
22 Feb 2021
Towards interpreting ML-based automated malware detection models: a
  survey
Towards interpreting ML-based automated malware detection models: a survey
Yuzhou Lin
Xiaolin Chang
124
7
0
15 Jan 2021
1