ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.06299
  4. Cited By
Monitoring and explainability of models in production

Monitoring and explainability of models in production

13 July 2020
Janis Klaise
A. V. Looveren
Clive Cox
G. Vacanti
Alexandru Coca
ArXivPDFHTML

Papers citing "Monitoring and explainability of models in production"

9 / 9 papers shown
Title
Estimating Model Performance Under Covariate Shift Without Labels
Estimating Model Performance Under Covariate Shift Without Labels
Jakub Bialek
W. Kuberski
Nikolaos Perrakis
Albert Bifet
20
2
0
16 Jan 2024
Monitoring Machine Learning Models: Online Detection of Relevant
  Deviations
Monitoring Machine Learning Models: Online Detection of Relevant Deviations
Florian Heinrichs
14
2
0
26 Sep 2023
DEPLOYR: A technical framework for deploying custom real-time machine
  learning models into the electronic medical record
DEPLOYR: A technical framework for deploying custom real-time machine learning models into the electronic medical record
Conor K. Corbin
R. Maclay
Aakash Acharya
Sreedevi Mony
Soumya Punnathanam
Rahul Thapa
N. Kotecha
N. Shah
Jonathan H. Chen
8
17
0
11 Mar 2023
Desiderata for next generation of ML model serving
Desiderata for next generation of ML model serving
Sherif Akoush
Andrei Paleyes
A. V. Looveren
Clive Cox
13
5
0
26 Oct 2022
Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a
  Pedestrian Automatic Emergency Brake System
Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a Pedestrian Automatic Emergency Brake System
Markus Borg
Jens Henriksson
Kasper Socha
Olof Lennartsson
Elias Sonnsjo Lonegren
T. Bui
Piotr Tomaszewski
S. Sathyamoorthy
Sebastian Brink
M. H. Moghadam
16
23
0
16 Apr 2022
CheXstray: Real-time Multi-Modal Data Concordance for Drift Detection in
  Medical Imaging AI
CheXstray: Real-time Multi-Modal Data Concordance for Drift Detection in Medical Imaging AI
Arjun Soin
J. Merkow
Jin Long
Joseph Paul Cohen
Smitha Saligrama
Stephen Kaiser
Steven Borg
I. Tarapov
M. Lungren
OOD
45
15
0
06 Feb 2022
Ensembling Shift Detectors: an Extensive Empirical Evaluation
Ensembling Shift Detectors: an Extensive Empirical Evaluation
Simona Maggio
L. Dreyfus-Schmidt
AI4TS
25
3
0
28 Jun 2021
Drug discovery with explainable artificial intelligence
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
25
623
0
01 Jul 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
1