Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.06605
Cited By
Privacy Amplification via Random Check-Ins
13 July 2020
Borja Balle
Peter Kairouz
H. B. McMahan
Om Thakkar
Abhradeep Thakurta
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Privacy Amplification via Random Check-Ins"
20 / 20 papers shown
Title
Efficient Full-Stack Private Federated Deep Learning with Post-Quantum Security
Yiwei Zhang
R. Behnia
A. Yavuz
Reza Ebrahimi
E. Bertino
FedML
31
0
0
09 May 2025
Learning from End User Data with Shuffled Differential Privacy over Kernel Densities
Tal Wagner
FedML
50
0
0
21 Feb 2025
Enhancing Privacy in the Early Detection of Sexual Predators Through Federated Learning and Differential Privacy
Khaoula Chehbouni
Martine De Cock
Gilles Caporossi
Afaf Taik
Reihaneh Rabbany
G. Farnadi
73
0
0
21 Jan 2025
Balls-and-Bins Sampling for DP-SGD
Lynn Chua
Badih Ghazi
Charlie Harrison
Ethan Leeman
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
80
3
0
21 Dec 2024
Near Exact Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Saminul Haque
Thomas Steinke
Abhradeep Thakurta
38
5
0
08 Oct 2024
Differentially Private Aggregation via Imperfect Shuffling
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Jelani Nelson
Samson Zhou
FedML
30
1
0
28 Aug 2023
Amplification by Shuffling without Shuffling
Borja Balle
James Bell
Adria Gascon
FedML
32
2
0
18 May 2023
Collaborative Mean Estimation over Intermittently Connected Networks with Peer-To-Peer Privacy
R. Saha
Mohamed Seif
M. Yemini
Andrea J. Goldsmith
H. Vincent Poor
FedML
19
2
0
28 Feb 2023
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
15
18
0
22 Jan 2023
Distributed DP-Helmet: Scalable Differentially Private Non-interactive Averaging of Single Layers
Moritz Kirschte
Sebastian Meiser
Saman Ardalan
Esfandiar Mohammadi
FedML
23
0
0
03 Nov 2022
Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy
Zhifeng Jiang
Wei Wang
Ruichuan Chen
40
6
0
26 Sep 2022
Stronger Privacy Amplification by Shuffling for Rényi and Approximate Differential Privacy
Vitaly Feldman
Audra McMillan
Kunal Talwar
FedML
20
47
0
09 Aug 2022
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
24
71
0
27 Oct 2021
Private Retrieval, Computing and Learning: Recent Progress and Future Challenges
S. Ulukus
Salman Avestimehr
Michael C. Gastpar
S. Jafar
Ravi Tandon
Chao Tian
FedML
22
64
0
30 Jul 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
181
411
0
14 Jul 2021
Differentially private inference via noisy optimization
Marco Avella-Medina
Casey Bradshaw
Po-Ling Loh
FedML
25
29
0
19 Mar 2021
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Zhiqi Bu
Sivakanth Gopi
Janardhan Kulkarni
Y. Lee
J. Shen
U. Tantipongpipat
FedML
24
41
0
05 Feb 2021
Privacy Amplification by Decentralization
Edwige Cyffers
A. Bellet
FedML
42
39
0
09 Dec 2020
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
141
420
0
29 Nov 2018
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
99
570
0
08 Dec 2012
1