ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.06968
  4. Cited By
Deep composition of tensor-trains using squared inverse Rosenblatt
  transports

Deep composition of tensor-trains using squared inverse Rosenblatt transports

14 July 2020
Tiangang Cui
S. Dolgov
    OT
ArXivPDFHTML

Papers citing "Deep composition of tensor-trains using squared inverse Rosenblatt transports"

18 / 18 papers shown
Title
A friendly introduction to triangular transport
A friendly introduction to triangular transport
M. Ramgraber
Daniel Sharp
M. Le Provost
Youssef Marzouk
58
0
0
27 Mar 2025
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
52
5
0
08 Apr 2024
Sequential transport maps using SoS density estimation and
  $α$-divergences
Sequential transport maps using SoS density estimation and ααα-divergences
Benjamin Zanger
Tiangang Cui
Martin Schreiber
O. Zahm
28
1
0
27 Feb 2024
Tensor product algorithms for inference of contact network from
  epidemiological data
Tensor product algorithms for inference of contact network from epidemiological data
Sergey V. Dolgov
D. Savostyanov
13
0
0
26 Jan 2024
Tractable Optimal Experimental Design using Transport Maps
Tractable Optimal Experimental Design using Transport Maps
Karina Koval
Roland Herzog
Robert Scheichl
OT
8
9
0
15 Jan 2024
TERM Model: Tensor Ring Mixture Model for Density Estimation
TERM Model: Tensor Ring Mixture Model for Density Estimation
Ruituo Wu
Jiani Liu
Ce Zhu
Anh-Huy Phan
Ivan V. Oseledets
Yipeng Liu
16
1
0
13 Dec 2023
Tensorizing flows: a tool for variational inference
Tensorizing flows: a tool for variational inference
Y. Khoo
M. Lindsey
Renana Keydar
DRL
13
4
0
03 May 2023
Self-reinforced polynomial approximation methods for concentrated
  probability densities
Self-reinforced polynomial approximation methods for concentrated probability densities
Tiangang Cui
S. Dolgov
O. Zahm
14
5
0
05 Mar 2023
An Approximation Theory Framework for Measure-Transport Sampling
  Algorithms
An Approximation Theory Framework for Measure-Transport Sampling Algorithms
Ricardo Baptista
Bamdad Hosseini
Nikola B. Kovachki
Youssef M. Marzouk
A. Sagiv
OT
17
17
0
27 Feb 2023
Tensor-train methods for sequential state and parameter learning in
  state-space models
Tensor-train methods for sequential state and parameter learning in state-space models
Yiran Zhao
Tiangang Cui
14
2
0
24 Jan 2023
Deep importance sampling using tensor trains with application to a
  priori and a posteriori rare event estimation
Deep importance sampling using tensor trains with application to a priori and a posteriori rare event estimation
Tiangang Cui
S. Dolgov
Robert Scheichl
24
3
0
05 Sep 2022
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
28
5
0
20 Jan 2022
Scalable conditional deep inverse Rosenblatt transports using
  tensor-trains and gradient-based dimension reduction
Scalable conditional deep inverse Rosenblatt transports using tensor-trains and gradient-based dimension reduction
Tiangang Cui
S. Dolgov
O. Zahm
11
15
0
08 Jun 2021
A unified performance analysis of likelihood-informed subspace methods
A unified performance analysis of likelihood-informed subspace methods
Tiangang Cui
X. Tong
17
26
0
07 Jan 2021
Tensor Train Random Projection
Tensor Train Random Projection
Yani Feng
Keju Tang
Lianxing He
Pingqiang Zhou
Qifeng Liao
8
3
0
21 Oct 2020
On the representation and learning of monotone triangular transport maps
On the representation and learning of monotone triangular transport maps
Ricardo Baptista
Youssef Marzouk
O. Zahm
6
46
0
22 Sep 2020
Rank Bounds for Approximating Gaussian Densities in the Tensor-Train
  Format
Rank Bounds for Approximating Gaussian Densities in the Tensor-Train Format
Paul B. Rohrbach
S. Dolgov
Lars Grasedyck
Robert Scheichl
8
21
0
22 Jan 2020
A Stein variational Newton method
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
53
114
0
08 Jun 2018
1