ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.07384
  4. Cited By
A Pairwise Fair and Community-preserving Approach to k-Center Clustering

A Pairwise Fair and Community-preserving Approach to k-Center Clustering

14 July 2020
Brian Brubach
D. Chakrabarti
John P. Dickerson
Samir Khuller
A. Srinivasan
Leonidas Tsepenekas
    FaML
ArXiv (abs)PDFHTML

Papers citing "A Pairwise Fair and Community-preserving Approach to k-Center Clustering"

26 / 26 papers shown
Title
Efficient k-means with Individual Fairness via Exponential Tilting
Efficient k-means with Individual Fairness via Exponential Tilting
Shengkun Zhu
Jinshan Zeng
Yuan Sun
Sheng Wang
Xiaodong Li
Zhiyong Peng
89
0
0
24 Jun 2024
Fair Clustering: Critique, Caveats, and Future Directions
Fair Clustering: Critique, Caveats, and Future Directions
John Dickerson
Seyed-Alireza Esmaeili
Jamie Morgenstern
Claire Jie Zhang
FaML
74
1
0
22 Jun 2024
A Polynomial-Time Approximation for Pairwise Fair $k$-Median Clustering
A Polynomial-Time Approximation for Pairwise Fair kkk-Median Clustering
Sayan Bandyapadhyay
E. Chlamtác
Yu. S. Makarychev
A. Vakilian
Yury Makarychev
Ali Vakilian
116
1
0
16 May 2024
From Discrete to Continuous: Deep Fair Clustering With Transferable
  Representations
From Discrete to Continuous: Deep Fair Clustering With Transferable Representations
Xiang Zhang
90
0
0
24 Mar 2024
Scalable Algorithms for Individual Preference Stable Clustering
Scalable Algorithms for Individual Preference Stable Clustering
Ron Mosenzon
A. Vakilian
80
3
0
15 Mar 2024
Fair Polylog-Approximate Low-Cost Hierarchical Clustering
Fair Polylog-Approximate Low-Cost Hierarchical Clustering
Marina Knittel
Max Springer
John Dickerson
Mohammadtaghi Hajiaghayi
FaML
46
2
0
21 Nov 2023
Constant Approximation for Individual Preference Stable Clustering
Constant Approximation for Individual Preference Stable Clustering
Anders Aamand
Justin Y. Chen
Allen Liu
Sandeep Silwal
Pattara Sukprasert
A. Vakilian
Fred Zhang
40
4
0
28 Sep 2023
Approximation Algorithms for Fair Range Clustering
Approximation Algorithms for Fair Range Clustering
S. S. Hotegni
S. Mahabadi
A. Vakilian
60
19
0
11 Jun 2023
Doubly Constrained Fair Clustering
Doubly Constrained Fair Clustering
John P. Dickerson
Seyed-Alireza Esmaeili
Jamie Morgenstern
Claire Jie Zhang
FaML
65
7
0
31 May 2023
Proportionally Representative Clustering
Proportionally Representative Clustering
Haris Aziz
Barton E. Lee
S. Chu
Jeremy Vollen
FaML
134
5
0
27 Apr 2023
Cluster-level Group Representativity Fairness in $k$-means Clustering
Cluster-level Group Representativity Fairness in kkk-means Clustering
Stanley Simoes
Deepak P
Muiris Maccarthaigh
FaML
47
0
0
29 Dec 2022
Deep Fair Clustering via Maximizing and Minimizing Mutual Information:
  Theory, Algorithm and Metric
Deep Fair Clustering via Maximizing and Minimizing Mutual Information: Theory, Algorithm and Metric
Pengxin Zeng
Yunfan Li
Peng Hu
Dezhong Peng
Jiancheng Lv
Xiaocui Peng
60
14
0
26 Sep 2022
Individual Preference Stability for Clustering
Individual Preference Stability for Clustering
Saba Ahmadi
Pranjal Awasthi
Samir Khuller
Matthäus Kleindessner
Jamie Morgenstern
Pattara Sukprasert
A. Vakilian
103
10
0
07 Jul 2022
Constant-Factor Approximation Algorithms for Socially Fair
  $k$-Clustering
Constant-Factor Approximation Algorithms for Socially Fair kkk-Clustering
Mehrdad Ghadiri
Mohit Singh
Santosh Vempala
67
10
0
22 Jun 2022
Fair Labeled Clustering
Fair Labeled Clustering
Seyed-Alireza Esmaeili
Sharmila Duppala
John P. Dickerson
Brian Brubach
FaML
61
6
0
28 May 2022
Generalized Reductions: Making any Hierarchical Clustering Fair and
  Balanced with Low Cost
Generalized Reductions: Making any Hierarchical Clustering Fair and Balanced with Low Cost
Marina Knittel
Max Springer
John P. Dickerson
Mohammadtaghi Hajiaghayi
FedML
54
7
0
27 May 2022
Fair Representation Clustering with Several Protected Classes
Fair Representation Clustering with Several Protected Classes
Zhen Dai
Yury Makarychev
A. Vakilian
FaML
120
9
0
03 Feb 2022
Approximating Fair Clustering with Cascaded Norm Objectives
Approximating Fair Clustering with Cascaded Norm Objectives
E. Chlamtác
Yury Makarychev
A. Vakilian
157
25
0
08 Nov 2021
A Sociotechnical View of Algorithmic Fairness
A Sociotechnical View of Algorithmic Fairness
Mateusz Dolata
Stefan Feuerriegel
Gerhard Schwabe
FaML
76
100
0
27 Sep 2021
Efficient Algorithms For Fair Clustering with a New Fairness Notion
Efficient Algorithms For Fair Clustering with a New Fairness Notion
Shivam Gupta
Ganesh Ghalme
N. C. Krishnan
Shweta Jain
FaML
90
8
0
02 Sep 2021
Fair Clustering Under a Bounded Cost
Fair Clustering Under a Bounded Cost
Seyed-Alireza Esmaeili
Brian Brubach
A. Srinivasan
John P. Dickerson
58
27
0
14 Jun 2021
Fair Disaster Containment via Graph-Cut Problems
Fair Disaster Containment via Graph-Cut Problems
M. Dinitz
A. Srinivasan
Leonidas Tsepenekas
A. Vullikanti
FaML
68
10
0
09 Jun 2021
A New Notion of Individually Fair Clustering: $α$-Equitable
  $k$-Center
A New Notion of Individually Fair Clustering: ααα-Equitable kkk-Center
D. Chakrabarti
John P. Dickerson
Seyed-Alireza Esmaeili
A. Srinivasan
Leonidas Tsepenekas
FaMLFedML
53
23
0
09 Jun 2021
Deep Fair Discriminative Clustering
Deep Fair Discriminative Clustering
Hongjing Zhang
Ian Davidson
FaML
36
11
0
28 May 2021
Approximation Algorithms for Socially Fair Clustering
Approximation Algorithms for Socially Fair Clustering
Yury Makarychev
A. Vakilian
78
50
0
03 Mar 2021
Fairness, Semi-Supervised Learning, and More: A General Framework for
  Clustering with Stochastic Pairwise Constraints
Fairness, Semi-Supervised Learning, and More: A General Framework for Clustering with Stochastic Pairwise Constraints
Brian Brubach
D. Chakrabarti
John P. Dickerson
A. Srinivasan
Leonidas Tsepenekas
59
22
0
02 Mar 2021
1