Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.07584
Cited By
On quantitative aspects of model interpretability
15 July 2020
An-phi Nguyen
María Rodríguez Martínez
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On quantitative aspects of model interpretability"
19 / 19 papers shown
Title
A constraints-based approach to fully interpretable neural networks for detecting learner behaviors
Juan D. Pinto
Luc Paquette
43
0
0
10 Apr 2025
Axiomatic Explainer Globalness via Optimal Transport
Davin Hill
Josh Bone
A. Masoomi
Max Torop
Jennifer Dy
100
1
0
13 Mar 2025
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Lukas Klein
Carsten T. Lüth
U. Schlegel
Till J. Bungert
Mennatallah El-Assady
Paul F. Jäger
XAI
ELM
42
2
0
03 Jan 2025
A Tale of Two Imperatives: Privacy and Explainability
Supriya Manna
Niladri Sett
94
0
0
30 Dec 2024
A Fresh Look at Sanity Checks for Saliency Maps
Anna Hedström
Leander Weber
Sebastian Lapuschkin
Marina M.-C. Höhne
FAtt
LRM
37
5
0
03 May 2024
Global Counterfactual Directions
Bartlomiej Sobieski
P. Biecek
DiffM
58
5
0
18 Apr 2024
Towards Evaluating Explanations of Vision Transformers for Medical Imaging
Piotr Komorowski
Hubert Baniecki
P. Biecek
MedIm
33
27
0
12 Apr 2023
Less is More: The Influence of Pruning on the Explainability of CNNs
David Weber
F. Merkle
Pascal Schöttle
Stephan Schlögl
Martin Nocker
FAtt
29
1
0
17 Feb 2023
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAI
FAtt
33
18
0
10 Nov 2022
Evaluating the Explainers: Black-Box Explainable Machine Learning for Student Success Prediction in MOOCs
Vinitra Swamy
Bahar Radmehr
Natasa Krco
Mirko Marras
Tanja Kaser
FAtt
ELM
11
39
0
01 Jul 2022
Enriching Artificial Intelligence Explanations with Knowledge Fragments
Jože M. Rožanec
Elena Trajkova
I. Novalija
Patrik Zajec
K. Kenda
B. Fortuna
Dunja Mladenić
26
9
0
12 Apr 2022
XAI in the context of Predictive Process Monitoring: Too much to Reveal
Ghada Elkhawaga
Mervat Abuelkheir
M. Reichert
14
1
0
16 Feb 2022
A Survey on Methods and Metrics for the Assessment of Explainability under the Proposed AI Act
Francesco Sovrano
Salvatore Sapienza
M. Palmirani
F. Vitali
14
17
0
21 Oct 2021
An Objective Metric for Explainable AI: How and Why to Estimate the Degree of Explainability
Francesco Sovrano
F. Vitali
31
30
0
11 Sep 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
W. Neiswanger
34
65
0
23 Jun 2021
Pitfalls of Explainable ML: An Industry Perspective
Sahil Verma
Aditya Lahiri
John P. Dickerson
Su-In Lee
XAI
16
9
0
14 Jun 2021
Quantifying Explainers of Graph Neural Networks in Computational Pathology
Guillaume Jaume
Pushpak Pati
Behzad Bozorgtabar
Antonio Foncubierta-Rodríguez
Florinda Feroce
A. Anniciello
T. Rau
Jean-Philippe Thiran
M. Gabrani
O. Goksel
FAtt
26
76
0
25 Nov 2020
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
36
7
0
23 Oct 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1