ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.07584
  4. Cited By
On quantitative aspects of model interpretability

On quantitative aspects of model interpretability

15 July 2020
An-phi Nguyen
María Rodríguez Martínez
ArXivPDFHTML

Papers citing "On quantitative aspects of model interpretability"

19 / 19 papers shown
Title
A constraints-based approach to fully interpretable neural networks for detecting learner behaviors
A constraints-based approach to fully interpretable neural networks for detecting learner behaviors
Juan D. Pinto
Luc Paquette
43
0
0
10 Apr 2025
Axiomatic Explainer Globalness via Optimal Transport
Axiomatic Explainer Globalness via Optimal Transport
Davin Hill
Josh Bone
A. Masoomi
Max Torop
Jennifer Dy
100
1
0
13 Mar 2025
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Lukas Klein
Carsten T. Lüth
U. Schlegel
Till J. Bungert
Mennatallah El-Assady
Paul F. Jäger
XAI
ELM
42
2
0
03 Jan 2025
A Tale of Two Imperatives: Privacy and Explainability
A Tale of Two Imperatives: Privacy and Explainability
Supriya Manna
Niladri Sett
94
0
0
30 Dec 2024
A Fresh Look at Sanity Checks for Saliency Maps
A Fresh Look at Sanity Checks for Saliency Maps
Anna Hedström
Leander Weber
Sebastian Lapuschkin
Marina M.-C. Höhne
FAtt
LRM
37
5
0
03 May 2024
Global Counterfactual Directions
Global Counterfactual Directions
Bartlomiej Sobieski
P. Biecek
DiffM
58
5
0
18 Apr 2024
Towards Evaluating Explanations of Vision Transformers for Medical
  Imaging
Towards Evaluating Explanations of Vision Transformers for Medical Imaging
Piotr Komorowski
Hubert Baniecki
P. Biecek
MedIm
33
27
0
12 Apr 2023
Less is More: The Influence of Pruning on the Explainability of CNNs
Less is More: The Influence of Pruning on the Explainability of CNNs
David Weber
F. Merkle
Pascal Schöttle
Stephan Schlögl
Martin Nocker
FAtt
29
1
0
17 Feb 2023
What Makes a Good Explanation?: A Harmonized View of Properties of
  Explanations
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAI
FAtt
33
18
0
10 Nov 2022
Evaluating the Explainers: Black-Box Explainable Machine Learning for
  Student Success Prediction in MOOCs
Evaluating the Explainers: Black-Box Explainable Machine Learning for Student Success Prediction in MOOCs
Vinitra Swamy
Bahar Radmehr
Natasa Krco
Mirko Marras
Tanja Kaser
FAtt
ELM
11
39
0
01 Jul 2022
Enriching Artificial Intelligence Explanations with Knowledge Fragments
Enriching Artificial Intelligence Explanations with Knowledge Fragments
Jože M. Rožanec
Elena Trajkova
I. Novalija
Patrik Zajec
K. Kenda
B. Fortuna
Dunja Mladenić
26
9
0
12 Apr 2022
XAI in the context of Predictive Process Monitoring: Too much to Reveal
XAI in the context of Predictive Process Monitoring: Too much to Reveal
Ghada Elkhawaga
Mervat Abuelkheir
M. Reichert
14
1
0
16 Feb 2022
A Survey on Methods and Metrics for the Assessment of Explainability
  under the Proposed AI Act
A Survey on Methods and Metrics for the Assessment of Explainability under the Proposed AI Act
Francesco Sovrano
Salvatore Sapienza
M. Palmirani
F. Vitali
14
17
0
21 Oct 2021
An Objective Metric for Explainable AI: How and Why to Estimate the
  Degree of Explainability
An Objective Metric for Explainable AI: How and Why to Estimate the Degree of Explainability
Francesco Sovrano
F. Vitali
31
30
0
11 Sep 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine
  Learning
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
W. Neiswanger
34
65
0
23 Jun 2021
Pitfalls of Explainable ML: An Industry Perspective
Pitfalls of Explainable ML: An Industry Perspective
Sahil Verma
Aditya Lahiri
John P. Dickerson
Su-In Lee
XAI
16
9
0
14 Jun 2021
Quantifying Explainers of Graph Neural Networks in Computational
  Pathology
Quantifying Explainers of Graph Neural Networks in Computational Pathology
Guillaume Jaume
Pushpak Pati
Behzad Bozorgtabar
Antonio Foncubierta-Rodríguez
Florinda Feroce
A. Anniciello
T. Rau
Jean-Philippe Thiran
M. Gabrani
O. Goksel
FAtt
26
76
0
25 Nov 2020
Exemplary Natural Images Explain CNN Activations Better than
  State-of-the-Art Feature Visualization
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
36
7
0
23 Oct 2020
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1