ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.08026
  4. Cited By
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
  Atomic-Orbital Features

OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features

15 July 2020
Zhuoran Qiao
Matthew Welborn
Anima Anandkumar
F. Manby
Thomas F. Miller
    AI4CE
ArXivPDFHTML

Papers citing "OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features"

9 / 59 papers shown
Title
Informing Geometric Deep Learning with Electronic Interactions to
  Accelerate Quantum Chemistry
Informing Geometric Deep Learning with Electronic Interactions to Accelerate Quantum Chemistry
Zhuoran Qiao
Anders S. Christensen
Matthew Welborn
F. Manby
Anima Anandkumar
Thomas F. Miller
16
74
0
31 May 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
158
245
0
01 May 2021
Artificial Intelligence based Autonomous Molecular Design for Medical
  Therapeutic: A Perspective
Artificial Intelligence based Autonomous Molecular Design for Medical Therapeutic: A Perspective
R. P. Joshi
Neeraj Kumar
16
2
0
10 Feb 2021
Spherical Message Passing for 3D Graph Networks
Spherical Message Passing for 3D Graph Networks
Yi Liu
Limei Wang
Meng Liu
Xuan Zhang
Bora Oztekin
Shuiwang Ji
GNN
22
197
0
09 Feb 2021
Fast and Uncertainty-Aware Directional Message Passing for
  Non-Equilibrium Molecules
Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules
Johannes Klicpera
Shankari Giri
Johannes T. Margraf
Stephan Günnemann
9
313
0
28 Nov 2020
Multi-task learning for electronic structure to predict and explore
  molecular potential energy surfaces
Multi-task learning for electronic structure to predict and explore molecular potential energy surfaces
Zhuoran Qiao
Feizhi Ding
Matthew Welborn
P. J. Bygrave
Daniel G. A. Smith
Anima Anandkumar
F. Manby
Thomas F. Miller
28
7
0
05 Nov 2020
An Introduction to Electrocatalyst Design using Machine Learning for
  Renewable Energy Storage
An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage
C. L. Zitnick
L. Chanussot
Abhishek Das
Siddharth Goyal
Javier Heras-Domingo
...
Kevin Tran
Brandon M. Wood
Junwoong Yoon
Devi Parikh
Zachary W. Ulissi
14
70
0
14 Oct 2020
Representations of molecules and materials for interpolation of
  quantum-mechanical simulations via machine learning
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Marcel F. Langer
Alex Goessmann
M. Rupp
AI4CE
15
92
0
26 Mar 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
169
1,775
0
02 Mar 2017
Previous
12