ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.08026
  4. Cited By
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
  Atomic-Orbital Features

OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features

15 July 2020
Zhuoran Qiao
Matthew Welborn
Anima Anandkumar
F. Manby
Thomas F. Miller
    AI4CE
ArXivPDFHTML

Papers citing "OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features"

50 / 59 papers shown
Title
Implicit Delta Learning of High Fidelity Neural Network Potentials
Implicit Delta Learning of High Fidelity Neural Network Potentials
Stephan Thaler
Cristian Gabellini
Nikhil Shenoy
Prudencio Tossou
AI4CE
80
0
0
08 Dec 2024
On the design space between molecular mechanics and machine learning
  force fields
On the design space between molecular mechanics and machine learning force fields
Yuanqing Wang
Kenichiro Takaba
Michael S. Chen
Marcus Wieder
Yuzhi Xu
...
Kyunghyun Cho
Joe G. Greener
Peter K. Eastman
Stefano Martiniani
M. Tuckerman
AI4CE
37
4
0
03 Sep 2024
A Multi-Grained Symmetric Differential Equation Model for Learning
  Protein-Ligand Binding Dynamics
A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics
Shengchao Liu
Weitao Du
Yanjing Li
Zhuoxinran Li
Vignesh C. Bhethanabotla
...
O. Yaghi
C. Borgs
A. Anandkumar
Hongyu Guo
J. Chayes
AI4CE
32
4
0
26 Jan 2024
3DReact: Geometric deep learning for chemical reactions
3DReact: Geometric deep learning for chemical reactions
Puck van Gerwen
K. Briling
Charlotte Bunne
Vignesh Ram Somnath
Rubén Laplaza
Andreas Krause
C. Corminboeuf
3DV
34
6
0
13 Dec 2023
Deep Learning as a Method for Inversion of NMR Signals
Deep Learning as a Method for Inversion of NMR Signals
Julian B. B. Beckmann
M. Mantle
A. Sederman
L. Gladden
13
1
0
22 Nov 2023
Electronic excited states from physically-constrained machine learning
Electronic excited states from physically-constrained machine learning
Edoardo Cignoni
Divya Suman
Jigyasa Nigam
Lorenzo Cupellini
B. Mennucci
Michele Ceriotti
25
15
0
01 Nov 2023
MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design
MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design
Xiang Fu
Tian Xie
Andrew S. Rosen
Tommi Jaakkola
Jake A. Smith
DiffM
34
9
0
16 Oct 2023
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property
  Prediction with 3D Information
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information
Taojie Kuang
Yiming Ren
Zhixiang Ren
23
7
0
28 Sep 2023
Deep learning probability flows and entropy production rates in active
  matter
Deep learning probability flows and entropy production rates in active matter
Nicholas M. Boffi
Eric Vanden-Eijnden
DiffM
22
17
0
22 Sep 2023
Distance-Restricted Folklore Weisfeiler-Leman GNNs with Provable Cycle
  Counting Power
Distance-Restricted Folklore Weisfeiler-Leman GNNs with Provable Cycle Counting Power
Junru Zhou
Jiarui Feng
Xiyuan Wang
Muhan Zhang
19
8
0
10 Sep 2023
Rotation-Invariant Random Features Provide a Strong Baseline for Machine
  Learning on 3D Point Clouds
Rotation-Invariant Random Features Provide a Strong Baseline for Machine Learning on 3D Point Clouds
O. Melia
Eric Jonas
Rebecca Willett
OOD
3DPC
18
3
0
27 Jul 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to
  Higher-Degree Representations
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
24
131
0
21 Jun 2023
Uncertainty Estimation for Molecules: Desiderata and Methods
Uncertainty Estimation for Molecules: Desiderata and Methods
Tom Wollschlager
Nicholas Gao
Bertrand Charpentier
Mohamed Amine Ketata
Stephan Günnemann
21
9
0
20 Jun 2023
Symmetry-Informed Geometric Representation for Molecules, Proteins, and
  Crystalline Materials
Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials
Shengchao Liu
Weitao Du
Yanjing Li
Zhuoxinran Li
Zhiling Zheng
...
Anima Anandkumar
C. Borgs
J. Chayes
Hongyu Guo
Jian Tang
AI4CE
31
19
0
15 Jun 2023
Efficient and Equivariant Graph Networks for Predicting Quantum
  Hamiltonian
Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian
Haiyang Yu
Zhao Xu
X. Qian
Xiaoning Qian
Shuiwang Ji
37
24
0
08 Jun 2023
A Comprehensive Survey on Deep Graph Representation Learning
A Comprehensive Survey on Deep Graph Representation Learning
Wei Ju
Zheng Fang
Yiyang Gu
Zequn Liu
Qingqing Long
...
Jingyang Yuan
Yusheng Zhao
Yifan Wang
Xiao Luo
Ming Zhang
GNN
AI4TS
31
141
0
11 Apr 2023
Clarifying Trust of Materials Property Predictions using Neural Networks
  with Distribution-Specific Uncertainty Quantification
Clarifying Trust of Materials Property Predictions using Neural Networks with Distribution-Specific Uncertainty Quantification
Cameron J Gruich
Varun Madhavan
Yixin Wang
B. Goldsmith
15
10
0
06 Feb 2023
Improved machine learning algorithm for predicting ground state
  properties
Improved machine learning algorithm for predicting ground state properties
Laura Lewis
Hsin-Yuan Huang
Viet-Trung Tran
Sebastian Lehner
R. Kueng
J. Preskill
AI4CE
28
43
0
30 Jan 2023
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Maciej Majewski
Adriana Pérez
Philipp Thölke
Stefan Doerr
N. Charron
T. Giorgino
B. Husic
C. Clementi
Frank Noé
Gianni de Fabritiis
AI4CE
8
70
0
14 Dec 2022
Boosting the Cycle Counting Power of Graph Neural Networks with
  I$^2$-GNNs
Boosting the Cycle Counting Power of Graph Neural Networks with I2^22-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
78
46
0
22 Oct 2022
Artificial Intelligence in Material Engineering: A review on
  applications of AI in Material Engineering
Artificial Intelligence in Material Engineering: A review on applications of AI in Material Engineering
Lipichanda Goswami
Manoj Deka
Mohendra Roy
AI4CE
29
19
0
15 Sep 2022
Graph Neural Networks for Molecules
Graph Neural Networks for Molecules
Yuyang Wang
Zijie Li
A. Farimani
GNN
AI4CE
45
20
0
12 Sep 2022
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
39
370
0
05 Aug 2022
Molecular-orbital-based Machine Learning for Open-shell and
  Multi-reference Systems with Kernel Addition Gaussian Process Regression
Molecular-orbital-based Machine Learning for Open-shell and Multi-reference Systems with Kernel Addition Gaussian Process Regression
Lixue Cheng
Jiace Sun
J. E. Deustua
Vignesh C. Bhethanabotla
Thomas F. Miller
9
6
0
17 Jul 2022
Spherical Channels for Modeling Atomic Interactions
Spherical Channels for Modeling Atomic Interactions
C. L. Zitnick
Abhishek Das
Adeesh Kolluru
Janice Lan
Muhammed Shuaibi
Anuroop Sriram
Zachary W. Ulissi
Brandon M. Wood
79
58
0
29 Jun 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
77
213
0
23 Jun 2022
DeePKS+ABACUS as a Bridge between Expensive Quantum Mechanical Models
  and Machine Learning Potentials
DeePKS+ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials
Wenfei Li
Q. Ou
Yixiao Chen
Yunlv Cao
Renxi Liu
...
Chun Cai
Xifan Wu
Han Wang
Mohan Chen
Linfeng Zhang
9
8
0
21 Jun 2022
3D Graph Contrastive Learning for Molecular Property Prediction
Kisung Moon
Sunyoung Kwon
13
17
0
31 May 2022
Molecular Dipole Moment Learning via Rotationally Equivariant Gaussian
  Process Regression with Derivatives in Molecular-orbital-based Machine
  Learning
Molecular Dipole Moment Learning via Rotationally Equivariant Gaussian Process Regression with Derivatives in Molecular-orbital-based Machine Learning
Jiace Sun
Lixue Cheng
Thomas F. Miller
10
2
0
31 May 2022
Sampling-free Inference for Ab-Initio Potential Energy Surface Networks
Sampling-free Inference for Ab-Initio Potential Energy Surface Networks
Nicholas Gao
Stephan Günnemann
DiffM
30
18
0
30 May 2022
Accurate Molecular-Orbital-Based Machine Learning Energies via
  Unsupervised Clustering of Chemical Space
Accurate Molecular-Orbital-Based Machine Learning Energies via Unsupervised Clustering of Chemical Space
Lixue Cheng
Jiace Sun
Thomas F. Miller
22
13
0
21 Apr 2022
MolGenSurvey: A Systematic Survey in Machine Learning Models for
  Molecule Design
MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
AI4CE
25
86
0
28 Mar 2022
Towards Training Billion Parameter Graph Neural Networks for Atomic
  Simulations
Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations
Anuroop Sriram
Abhishek Das
Brandon M. Wood
Siddharth Goyal
C. L. Zitnick
AI4CE
25
27
0
18 Mar 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni de Fabritiis
AI4CE
27
184
0
05 Feb 2022
NNP/MM: Accelerating molecular dynamics simulations with machine
  learning potentials and molecular mechanic
NNP/MM: Accelerating molecular dynamics simulations with machine learning potentials and molecular mechanic
Raimondas Galvelis
Alejandro Varela-Rial
Stefan Doerr
R. Fino
Peter K. Eastman
T. Markland
J. Chodera
Gianni de Fabritiis
11
38
0
20 Jan 2022
Formula graph self-attention network for representation-domain
  independent materials discovery
Formula graph self-attention network for representation-domain independent materials discovery
A. Ihalage
Y. Hao
OOD
17
15
0
14 Jan 2022
Directional Message Passing on Molecular Graphs via Synthetic
  Coordinates
Directional Message Passing on Molecular Graphs via Synthetic Coordinates
Johannes Klicpera
Chandan Yeshwanth
Stephan Günnemann
35
35
0
08 Nov 2021
Geometric Transformer for End-to-End Molecule Properties Prediction
Geometric Transformer for End-to-End Molecule Properties Prediction
Yoni Choukroun
Lior Wolf
AI4CE
ViT
17
16
0
26 Oct 2021
Nested Graph Neural Networks
Nested Graph Neural Networks
Muhan Zhang
Pan Li
19
163
0
25 Oct 2021
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave
  Functions
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
Nicholas Gao
Stephan Günnemann
19
36
0
11 Oct 2021
Molecular Energy Learning Using Alternative Blackbox Matrix-Matrix
  Multiplication Algorithm for Exact Gaussian Process
Molecular Energy Learning Using Alternative Blackbox Matrix-Matrix Multiplication Algorithm for Exact Gaussian Process
Jiace Sun
Lixue Cheng
Thomas F. Miller
18
3
0
20 Sep 2021
Excited state, non-adiabatic dynamics of large photoswitchable molecules
  using a chemically transferable machine learning potential
Excited state, non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential
Simon Axelrod
E. Shakhnovich
Rafael Gómez-Bombarelli
13
49
0
10 Aug 2021
Distributed Representations of Atoms and Materials for Machine Learning
Distributed Representations of Atoms and Materials for Machine Learning
Luis M. Antunes
R. Grau‐Crespo
K. Butler
AI4CE
8
26
0
30 Jul 2021
Predicting trajectory behaviour via machine-learned invariant manifolds
Predicting trajectory behaviour via machine-learned invariant manifolds
Vladimír Krajvnák
Shibabrat Naik
Stephen Wiggins
14
5
0
21 Jul 2021
Provably efficient machine learning for quantum many-body problems
Provably efficient machine learning for quantum many-body problems
Hsin-Yuan Huang
R. Kueng
Giacomo Torlai
Victor V. Albert
J. Preskill
AI4CE
11
231
0
23 Jun 2021
Rotation Invariant Graph Neural Networks using Spin Convolutions
Rotation Invariant Graph Neural Networks using Spin Convolutions
Muhammed Shuaibi
Adeesh Kolluru
Abhishek Das
Aditya Grover
Anuroop Sriram
Zachary W. Ulissi
C. L. Zitnick
AI4CE
8
67
0
17 Jun 2021
SE(3)-equivariant prediction of molecular wavefunctions and electronic
  densities
SE(3)-equivariant prediction of molecular wavefunctions and electronic densities
Oliver T. Unke
Mihail Bogojeski
M. Gastegger
Mario Geiger
Tess E. Smidt
Klaus-Robert Muller
17
86
0
04 Jun 2021
Materials Representation and Transfer Learning for Multi-Property
  Prediction
Materials Representation and Transfer Learning for Multi-Property Prediction
Shufeng Kong
D. Guevarra
Carla P. Gomes
J. Gregoire
AI4CE
19
42
0
04 Jun 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
19
433
0
02 Jun 2021
Learning neural network potentials from experimental data via
  Differentiable Trajectory Reweighting
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
Stephan Thaler
J. Zavadlav
13
66
0
02 Jun 2021
12
Next