ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.08194
  4. Cited By
Training Interpretable Convolutional Neural Networks by Differentiating
  Class-specific Filters

Training Interpretable Convolutional Neural Networks by Differentiating Class-specific Filters

16 July 2020
Haoyun Liang
Zhihao Ouyang
Yuyuan Zeng
Hang Su
Zihao He
Shutao Xia
Jun Zhu
Bo Zhang
ArXivPDFHTML

Papers citing "Training Interpretable Convolutional Neural Networks by Differentiating Class-specific Filters"

8 / 8 papers shown
Title
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification
Guillaume Jeanneret
Loïc Simon
F. Jurie
ViT
44
0
0
24 Feb 2025
COMIX: Compositional Explanations using Prototypes
COMIX: Compositional Explanations using Prototypes
S. Sivaprasad
D. Kangin
Plamen Angelov
Mario Fritz
49
0
0
10 Jan 2025
Understanding the Role of Pathways in a Deep Neural Network
Understanding the Role of Pathways in a Deep Neural Network
Lei Lyu
Chen Pang
Jihua Wang
22
3
0
28 Feb 2024
PICNN: A Pathway towards Interpretable Convolutional Neural Networks
PICNN: A Pathway towards Interpretable Convolutional Neural Networks
Wengang Guo
Jiayi Yang
Huilin Yin
Qijun Chen
Wei Ye
18
3
0
19 Dec 2023
Bort: Towards Explainable Neural Networks with Bounded Orthogonal
  Constraint
Bort: Towards Explainable Neural Networks with Bounded Orthogonal Constraint
Borui Zhang
Wenzhao Zheng
Jie Zhou
Jiwen Lu
AAML
23
7
0
18 Dec 2022
TCNL: Transparent and Controllable Network Learning Via Embedding
  Human-Guided Concepts
TCNL: Transparent and Controllable Network Learning Via Embedding Human-Guided Concepts
Zhihao Wang
Chuang Zhu
16
1
0
07 Oct 2022
Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable
  Prototypes
Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable Prototypes
Jonathan Donnelly
A. Barnett
Chaofan Chen
3DH
17
127
0
29 Nov 2021
Do semantic parts emerge in Convolutional Neural Networks?
Do semantic parts emerge in Convolutional Neural Networks?
Abel Gonzalez-Garcia
Davide Modolo
V. Ferrari
144
113
0
13 Jul 2016
1