Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.08194
Cited By
Training Interpretable Convolutional Neural Networks by Differentiating Class-specific Filters
16 July 2020
Haoyun Liang
Zhihao Ouyang
Yuyuan Zeng
Hang Su
Zihao He
Shutao Xia
Jun Zhu
Bo Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Training Interpretable Convolutional Neural Networks by Differentiating Class-specific Filters"
8 / 8 papers shown
Title
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification
Guillaume Jeanneret
Loïc Simon
F. Jurie
ViT
44
0
0
24 Feb 2025
COMIX: Compositional Explanations using Prototypes
S. Sivaprasad
D. Kangin
Plamen Angelov
Mario Fritz
59
0
0
10 Jan 2025
Understanding the Role of Pathways in a Deep Neural Network
Lei Lyu
Chen Pang
Jihua Wang
22
3
0
28 Feb 2024
PICNN: A Pathway towards Interpretable Convolutional Neural Networks
Wengang Guo
Jiayi Yang
Huilin Yin
Qijun Chen
Wei Ye
18
3
0
19 Dec 2023
Bort: Towards Explainable Neural Networks with Bounded Orthogonal Constraint
Borui Zhang
Wenzhao Zheng
Jie Zhou
Jiwen Lu
AAML
23
7
0
18 Dec 2022
TCNL: Transparent and Controllable Network Learning Via Embedding Human-Guided Concepts
Zhihao Wang
Chuang Zhu
19
1
0
07 Oct 2022
Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable Prototypes
Jonathan Donnelly
A. Barnett
Chaofan Chen
3DH
17
127
0
29 Nov 2021
Do semantic parts emerge in Convolutional Neural Networks?
Abel Gonzalez-Garcia
Davide Modolo
V. Ferrari
147
113
0
13 Jul 2016
1