ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.08322
  4. Cited By
Understanding Implicit Regularization in Over-Parameterized Single Index
  Model

Understanding Implicit Regularization in Over-Parameterized Single Index Model

16 July 2020
Jianqing Fan
Zhuoran Yang
Mengxin Yu
ArXivPDFHTML

Papers citing "Understanding Implicit Regularization in Over-Parameterized Single Index Model"

7 / 7 papers shown
Title
Theoretical Guarantees for Permutation-Equivariant Quantum Neural
  Networks
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
9
83
0
18 Oct 2022
Tensor-on-Tensor Regression: Riemannian Optimization,
  Over-parameterization, Statistical-computational Gap, and Their Interplay
Tensor-on-Tensor Regression: Riemannian Optimization, Over-parameterization, Statistical-computational Gap, and Their Interplay
Yuetian Luo
Anru R. Zhang
8
19
0
17 Jun 2022
COMBSS: Best Subset Selection via Continuous Optimization
COMBSS: Best Subset Selection via Continuous Optimization
S. Moka
Benoit Liquet
Hou-Ying Zhu
Samuel Muller
11
5
0
05 May 2022
Are Latent Factor Regression and Sparse Regression Adequate?
Are Latent Factor Regression and Sparse Regression Adequate?
Jianqing Fan
Zhipeng Lou
Mengxin Yu
CML
25
21
0
02 Mar 2022
Natural Language Processing Advancements By Deep Learning: A Survey
Natural Language Processing Advancements By Deep Learning: A Survey
A. Torfi
Rouzbeh A. Shirvani
Yaser Keneshloo
Nader Tavvaf
Edward A. Fox
AI4CE
VLM
73
158
0
02 Mar 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,878
0
15 Sep 2016
A Shrinkage Principle for Heavy-Tailed Data: High-Dimensional Robust
  Low-Rank Matrix Recovery
A Shrinkage Principle for Heavy-Tailed Data: High-Dimensional Robust Low-Rank Matrix Recovery
Jianqing Fan
Weichen Wang
Ziwei Zhu
42
95
0
28 Mar 2016
1