ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.10359
  4. Cited By
GPU coprocessors as a service for deep learning inference in high energy
  physics

GPU coprocessors as a service for deep learning inference in high energy physics

20 July 2020
J. Krupa
Kelvin Lin
M. Acosta Flechas
Jack T. Dinsmore
Javier Mauricio Duarte
Philip C. Harris
Scott Hauck
B. Holzman
Shih-Chieh Hsu
T. Klijnsma
Miaoyuan Liu
K. Pedro
D. Rankin
Natchanon Suaysom
Matthew Trahms
N. Tran
    BDL
    3DV
ArXivPDFHTML

Papers citing "GPU coprocessors as a service for deep learning inference in high energy physics"

4 / 4 papers shown
Title
Physics Community Needs, Tools, and Resources for Machine Learning
Physics Community Needs, Tools, and Resources for Machine Learning
Philip C. Harris
E. Katsavounidis
W. McCormack
D. Rankin
Yongbin Feng
...
De-huai Chen
Mark S. Neubauer
Javier Mauricio Duarte
G. Karagiorgi
Miaoyuan Liu
AI4CE
17
3
0
30 Mar 2022
Data science and Machine learning in the Clouds: A Perspective for the
  Future
Data science and Machine learning in the Clouds: A Perspective for the Future
H. Barua
11
5
0
02 Sep 2021
Charged particle tracking via edge-classifying interaction networks
Charged particle tracking via edge-classifying interaction networks
G. Dezoort
S. Thais
Javier Mauricio Duarte
Vesal Razavimaleki
M. Atkinson
I. Ojalvo
Mark S. Neubauer
P. Elmer
25
46
0
30 Mar 2021
MLPF: Efficient machine-learned particle-flow reconstruction using graph
  neural networks
MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks
J. Pata
Javier Mauricio Duarte
J. Vlimant
M. Pierini
M. Spiropulu
107
76
0
21 Jan 2021
1