ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.11412
  4. Cited By
Coarse Graining Molecular Dynamics with Graph Neural Networks

Coarse Graining Molecular Dynamics with Graph Neural Networks

22 July 2020
B. Husic
N. Charron
Dominik Lemm
Jiang Wang
Adria Pérez
Maciej Majewski
Andreas Krämer
Yaoyi Chen
Simon Olsson
Gianni de Fabritiis
Frank Noé
C. Clementi
    AI4CE
ArXivPDFHTML

Papers citing "Coarse Graining Molecular Dynamics with Graph Neural Networks"

10 / 10 papers shown
Title
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Maximilian Stupp
P. S. Koutsourelakis
38
0
0
29 Apr 2025
Foundation Inference Models for Markov Jump Processes
Foundation Inference Models for Markov Jump Processes
David Berghaus
K. Cvejoski
Patrick Seifner
C. Ojeda
Ramses J. Sanchez
14
1
0
10 Jun 2024
Predicting solvation free energies with an implicit solvent machine learning potential
Predicting solvation free energies with an implicit solvent machine learning potential
Sebastien Röcken
A. F. Burnet
J. Zavadlav
AI4Cl
AI4CE
40
3
0
31 May 2024
DiAMoNDBack: Diffusion-denoising Autoregressive Model for
  Non-Deterministic Backmapping of Cα Protein Traces
DiAMoNDBack: Diffusion-denoising Autoregressive Model for Non-Deterministic Backmapping of Cα Protein Traces
Michael S. Jones
Kirill Shmilovich
Andrew L. Ferguson
DiffM
19
12
0
23 Jul 2023
Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
  for Molecular Dynamics
Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates for Molecular Dynamics
M. Schreiner
Ole Winther
Simon Olsson
OOD
AI4CE
25
13
0
29 May 2023
On the Relationships between Graph Neural Networks for the Simulation of
  Physical Systems and Classical Numerical Methods
On the Relationships between Graph Neural Networks for the Simulation of Physical Systems and Classical Numerical Methods
Artur P. Toshev
Ludger Paehler
A. Panizza
Nikolaus A. Adams
AI4CE
PINN
11
5
0
31 Mar 2023
GraphVAMPNet, using graph neural networks and variational approach to
  markov processes for dynamical modeling of biomolecules
GraphVAMPNet, using graph neural networks and variational approach to markov processes for dynamical modeling of biomolecules
Mahdi Ghorbani
Samarjeet Prasad
Jeffery B. Klauda
B. Brooks
GNN
12
30
0
12 Jan 2022
Artificial intelligence techniques for integrative structural biology of
  intrinsically disordered proteins
Artificial intelligence techniques for integrative structural biology of intrinsically disordered proteins
A. Ramanathan
Henglong Ma
Akash Parvatikar
C. Chennubhotla
AI4CE
13
40
0
01 Dec 2020
Variational Koopman models: slow collective variables and molecular
  kinetics from short off-equilibrium simulations
Variational Koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations
Hao Wu
Feliks Nuske
Fabian Paul
Stefan Klus
P. Koltai
Frank Noé
96
126
0
20 Oct 2016
Estimation and uncertainty of reversible Markov models
Estimation and uncertainty of reversible Markov models
Benjamin Trendelkamp-Schroer
Hao Wu
Fabian Paul
Frank Noé
68
129
0
19 Jul 2015
1