ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.11412
  4. Cited By
Coarse Graining Molecular Dynamics with Graph Neural Networks
v1v2v3 (latest)

Coarse Graining Molecular Dynamics with Graph Neural Networks

22 July 2020
B. Husic
N. Charron
Dominik Lemm
Jiang Wang
Adria Pérez
Maciej Majewski
Andreas Krämer
Yaoyi Chen
Simon Olsson
Gianni De Fabritiis
Frank Noé
C. Clementi
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Coarse Graining Molecular Dynamics with Graph Neural Networks"

47 / 47 papers shown
Title
Scalable learning of macroscopic stochastic dynamics
Scalable learning of macroscopic stochastic dynamics
Mengyi Chen
Pengru Huang
K. Novoselov
Qianxiao Li
AI4CE
116
0
0
17 Nov 2025
Learning Biomolecular Motion: The Physics-Informed Machine Learning Paradigm
Learning Biomolecular Motion: The Physics-Informed Machine Learning Paradigm
Aaryesh Deshpande
AI4CE
328
0
0
10 Nov 2025
Enhanced Sampling for Efficient Learning of Coarse-Grained Machine Learning Potentials
Enhanced Sampling for Efficient Learning of Coarse-Grained Machine Learning Potentials
Weilong Chen
Franz Görlich
Paul Fuchs
Julija Zavadlav
73
1
0
13 Oct 2025
Active Learning for Machine Learning Driven Molecular Dynamics
Active Learning for Machine Learning Driven Molecular Dynamics
Kevin Bachelor
Sanya Murdeshwar
Daniel Sabo
Razvan Marinescu
AI4CE
56
0
0
21 Sep 2025
AI-based Methods for Simulating, Sampling, and Predicting Protein Ensembles
AI-based Methods for Simulating, Sampling, and Predicting Protein Ensembles
Bowen Jing
Bonnie Berger
Tommi Jaakkola
3DV
105
2
0
21 Sep 2025
TICA-Based Free Energy Matching for Machine-Learned Molecular Dynamics
TICA-Based Free Energy Matching for Machine-Learned Molecular Dynamics
Alexander Aghili
Andy Bruce
Daniel Sabo
Razvan Marinescu
56
1
0
18 Sep 2025
Data-driven particle dynamics: Structure-preserving coarse-graining for emergent behavior in non-equilibrium systems
Data-driven particle dynamics: Structure-preserving coarse-graining for emergent behavior in non-equilibrium systems
Quercus Hernandez
Max Win
Thomas C. O'Connor
Paulo E. Arratia
Nathaniel Trask
AI4CE
101
0
0
18 Aug 2025
Consistent Sampling and Simulation: Molecular Dynamics with Energy-Based Diffusion Models
Consistent Sampling and Simulation: Molecular Dynamics with Energy-Based Diffusion Models
Michael Plainer
Hao Wu
Leon Klein
Stephan Günnemann
Frank Noé
DiffM
182
8
0
20 Jun 2025
An Iterative Framework for Generative Backmapping of Coarse Grained Proteins
An Iterative Framework for Generative Backmapping of Coarse Grained Proteins
Georgios Kementzidis
Erin Wong
John Nicholson
Ruichen Xu
Yuefan Deng
161
2
0
23 May 2025
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework without Data
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework without DataJournal of Chemical Theory and Computation (JCTC), 2025
Maximilian Stupp
P. S. Koutsourelakis
279
1
0
29 Apr 2025
Towards scientific machine learning for granular material simulations -- challenges and opportunities
Towards scientific machine learning for granular material simulations -- challenges and opportunitiesArchives of Computational Methods in Engineering (ACME), 2025
Marc Fransen
Andreas Fürst
D. Tunuguntla
Daniel N. Wilke
Benedikt Alkin
...
Takayuki Shuku
WaiChing Sun
T. Weinhart
Dongwei Ye
Hongyang Cheng
AI4CE
221
2
0
01 Apr 2025
Universally applicable and tunable graph-based coarse-graining for Machine learning force fields
Universally applicable and tunable graph-based coarse-graining for Machine learning force fields
Christoph Brunken
Sebastien Boyer
Mustafa Omar
Martin Maarand
Olivier Peltre
Solal Attias
Bakary Diallo
Anastasia Markina
Olaf Othersen
Oliver E. Bent
OODAI4CE
183
1
0
24 Mar 2025
Learning Macroscopic Dynamics from Partial Microscopic Observations
Learning Macroscopic Dynamics from Partial Microscopic ObservationsNeural Information Processing Systems (NeurIPS), 2024
Mengyi Chen
Qianxiao Li
AI4CE
275
1
0
31 Oct 2024
EquiJump: Protein Dynamics Simulation via SO(3)-Equivariant Stochastic
  Interpolants
EquiJump: Protein Dynamics Simulation via SO(3)-Equivariant Stochastic Interpolants
Allan dos Santos Costa
Ilan Mitnikov
Franco Pellegrini
Ameya Daigavane
Mario Geiger
Zhonglin Cao
Karsten Kreis
Tess E. Smidt
E. Küçükbenli
J. Jacobson
181
8
0
12 Oct 2024
AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein
  Thermodynamics
AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein ThermodynamicsJournal of Chemical Theory and Computation (JCTC), 2024
Antonio Mirarchi
Raúl P. Peláez
Guillem Simeon
Gianni De Fabritiis
221
7
0
26 Sep 2024
Thermodynamic Transferability in Coarse-Grained Force Fields using Graph
  Neural Networks
Thermodynamic Transferability in Coarse-Grained Force Fields using Graph Neural Networks
Emily Shinkle
Aleksandra Pachalieva
Riti Bahl
Sakib Matin
Brendan Gifford
G. Craven
Nicholas Lubbers
138
8
0
17 Jun 2024
Foundation Inference Models for Markov Jump Processes
Foundation Inference Models for Markov Jump ProcessesNeural Information Processing Systems (NeurIPS), 2024
David Berghaus
K. Cvejoski
Patrick Seifner
C. Ojeda
Ramses J. Sanchez
275
8
0
10 Jun 2024
Predicting solvation free energies with an implicit solvent machine learning potential
Predicting solvation free energies with an implicit solvent machine learning potential
Sebastien Röcken
A. F. Burnet
Julija Zavadlav
AI4ClAI4CE
392
9
0
31 May 2024
Probabilistic Graph Rewiring via Virtual Nodes
Probabilistic Graph Rewiring via Virtual Nodes
Chendi Qian
Andrei Manolache
Christopher Morris
Mathias Niepert
AI4CE
273
11
0
27 May 2024
Conditional Normalizing Flows for Active Learning of Coarse-Grained
  Molecular Representations
Conditional Normalizing Flows for Active Learning of Coarse-Grained Molecular Representations
Henrik Schopmans
Pascal Friederich
AI4CE
306
5
0
02 Feb 2024
Navigating protein landscapes with a machine-learned transferable
  coarse-grained model
Navigating protein landscapes with a machine-learned transferable coarse-grained modelNature Chemistry (Nat. Chem.), 2023
N. Charron
Felix Musil
Andrea Guljas
Yaoyi Chen
Klara Bonneau
...
B. Husic
Ankit Patel
Gianni De Fabritiis
Frank Noé
C. Clementi
AI4CE
182
26
0
27 Oct 2023
DiAMoNDBack: Diffusion-denoising Autoregressive Model for
  Non-Deterministic Backmapping of Cα Protein Traces
DiAMoNDBack: Diffusion-denoising Autoregressive Model for Non-Deterministic Backmapping of Cα Protein TracesJournal of Chemical Theory and Computation (JCTC), 2023
Michael S. Jones
Kirill Shmilovich
Andrew L. Ferguson
DiffM
186
23
0
23 Jul 2023
CoarsenConf: Equivariant Coarsening with Aggregated Attention for
  Molecular Conformer Generation
CoarsenConf: Equivariant Coarsening with Aggregated Attention for Molecular Conformer GenerationJournal of Chemical Information and Modeling (JCIM), 2023
Danny Reidenbach
Aditi S. Krishnapriyan
171
9
0
26 Jun 2023
Top-down machine learning of coarse-grained protein force-fields
Top-down machine learning of coarse-grained protein force-fieldsJournal of Chemical Theory and Computation (JCTC), 2023
Carles Navarro
Maciej Majewski
Gianni De Fabritiis
AI4CE
283
16
0
20 Jun 2023
Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
  for Molecular Dynamics
Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates for Molecular Dynamics
Mathias Jacob Schreiner
Ole Winther
Simon Olsson
OODAI4CE
299
20
0
29 May 2023
On the Relationships between Graph Neural Networks for the Simulation of
  Physical Systems and Classical Numerical Methods
On the Relationships between Graph Neural Networks for the Simulation of Physical Systems and Classical Numerical Methods
Artur Toshev
Ludger Paehler
A. Panizza
Nikolaus A. Adams
AI4CEPINN
236
5
0
31 Mar 2023
FlexVDW: A machine learning approach to account for protein flexibility
  in ligand docking
FlexVDW: A machine learning approach to account for protein flexibility in ligand docking
Patricia Suriana
Joseph M. Paggi
R. Dror
AI4CE
71
2
0
20 Mar 2023
Statistically Optimal Force Aggregation for Coarse-Graining Molecular
  Dynamics
Statistically Optimal Force Aggregation for Coarse-Graining Molecular DynamicsJournal of Physical Chemistry Letters (JPCL), 2023
Andreas Krämer
Aleksander E. P. Durumeric
N. Charron
Yaoyi Chen
C. Clementi
Frank Noé
AI4CE
173
28
0
14 Feb 2023
Two for One: Diffusion Models and Force Fields for Coarse-Grained
  Molecular Dynamics
Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular DynamicsJournal of Chemical Theory and Computation (JCTC), 2023
Marloes Arts
Victor Garcia Satorras
Chin-Wei Huang
Daniel Zuegner
Marco Federici
C. Clementi
Frank Noé
Tian Xie
Rianne van den Berg
DiffM
295
112
0
01 Feb 2023
EPR-Net: Constructing non-equilibrium potential landscape via a
  variational force projection formulation
EPR-Net: Constructing non-equilibrium potential landscape via a variational force projection formulationNational Science Review (NSR), 2023
Yue Zhao
Wei Zhang
Tiejun Li
DiffM
132
10
0
05 Jan 2023
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and PitfallsJournal of Chemical Theory and Computation (JCTC), 2022
Stephan Thaler
Gregor Doehner
Julija Zavadlav
229
23
0
15 Dec 2022
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Machine Learning Coarse-Grained Potentials of Protein ThermodynamicsNature Communications (Nat Commun), 2022
Maciej Majewski
Adriana Pérez
Philipp Thölke
Stefan Doerr
N. Charron
T. Giorgino
B. Husic
C. Clementi
Frank Noé
Gianni De Fabritiis
AI4CE
158
98
0
14 Dec 2022
Developing Machine-Learned Potentials for Coarse-Grained Molecular
  Simulations: Challenges and Pitfalls
Developing Machine-Learned Potentials for Coarse-Grained Molecular Simulations: Challenges and PitfallsHellenic Conference on Artificial Intelligence (HAI), 2022
E. Ricci
Georgios Paliouras
V. Karkaletsis
D. Theodorou
Niki Vergadou
AI4CE
113
9
0
26 Sep 2022
Investigation of Machine Learning-based Coarse-Grained Mapping Schemes
  for Organic Molecules
Investigation of Machine Learning-based Coarse-Grained Mapping Schemes for Organic MoleculesHellenic Conference on Artificial Intelligence (HAI), 2022
Dimitris Nasikas
E. Ricci
Georgios Paliouras
V. Karkaletsis
D. Theodorou
Niki Vergadou
126
7
0
26 Sep 2022
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistryCommunications Materials (Commun. Mater.), 2022
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNNAI4CE
268
567
0
05 Aug 2022
Contrastive Learning of Coarse-Grained Force Fields
Contrastive Learning of Coarse-Grained Force FieldsJournal of Chemical Theory and Computation (JCTC), 2022
Xinqiang Ding
Bin W. Zhang
126
25
0
22 May 2022
Simulate Time-integrated Coarse-grained Molecular Dynamics with
  Multi-Scale Graph Networks
Simulate Time-integrated Coarse-grained Molecular Dynamics with Multi-Scale Graph Networks
Xiang Fu
T. Xie
Nathan J. Rebello
B. Olsen
Tommi Jaakkola
AI4CE
231
25
0
21 Apr 2022
Automatic Identification of Chemical Moieties
Automatic Identification of Chemical MoietiesPhysical Chemistry, Chemical Physics - PCCP (PCCP), 2022
Jonas Lederer
M. Gastegger
Kristof T. Schütt
Michael C. Kampffmeyer
Klaus-Robert Muller
Oliver T. Unke
145
5
0
30 Mar 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
327
239
0
05 Feb 2022
Generative Coarse-Graining of Molecular Conformations
Generative Coarse-Graining of Molecular ConformationsInternational Conference on Machine Learning (ICML), 2022
Wujie Wang
Minkai Xu
Chen Cai
Benjamin Kurt Miller
Tess E. Smidt
Yusu Wang
Jian Tang
Rafael Gómez-Bombarelli
125
43
0
28 Jan 2022
GraphVAMPNet, using graph neural networks and variational approach to
  markov processes for dynamical modeling of biomolecules
GraphVAMPNet, using graph neural networks and variational approach to markov processes for dynamical modeling of biomolecules
Mahdi Ghorbani
Samarjeet Prasad
Jeffery B. Klauda
B. Brooks
GNN
92
37
0
12 Jan 2022
Graph Neural Networks Accelerated Molecular Dynamics
Graph Neural Networks Accelerated Molecular DynamicsJournal of Chemical Physics (JCP), 2021
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNNAI4CE
180
70
0
06 Dec 2021
Smooth Normalizing Flows
Smooth Normalizing Flows
Jonas Köhler
Andreas Krämer
Frank Noé
244
62
0
01 Oct 2021
Learning neural network potentials from experimental data via
  Differentiable Trajectory Reweighting
Learning neural network potentials from experimental data via Differentiable Trajectory ReweightingNature Communications (Nat Commun), 2021
Stephan Thaler
Julija Zavadlav
202
84
0
02 Jun 2021
TorchMD: A deep learning framework for molecular simulations
TorchMD: A deep learning framework for molecular simulationsJournal of Chemical Theory and Computation (JCTC), 2020
Stefan Doerr
Maciej Majewski
Adria Pérez
Andreas Krämer
C. Clementi
Frank Noe
T. Giorgino
Gianni De Fabritiis
AI4CE
271
192
0
22 Dec 2020
Artificial intelligence techniques for integrative structural biology of
  intrinsically disordered proteins
Artificial intelligence techniques for integrative structural biology of intrinsically disordered proteinsCurrent Opinion in Structural Biology (COSB), 2020
A. Ramanathan
Henglong Ma
Akash Parvatikar
C. Chennubhotla
AI4CE
147
44
0
01 Dec 2020
Relevance of Rotationally Equivariant Convolutions for Predicting
  Molecular Properties
Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties
Benjamin Kurt Miller
Mario Geiger
Tess E. Smidt
Frank Noé
276
80
0
19 Aug 2020
1