ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.14184
  4. Cited By
A Commentary on the Unsupervised Learning of Disentangled
  Representations

A Commentary on the Unsupervised Learning of Disentangled Representations

28 July 2020
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
    OOD
    DRL
ArXivPDFHTML

Papers citing "A Commentary on the Unsupervised Learning of Disentangled Representations"

8 / 8 papers shown
Title
Separating common from salient patterns with Contrastive Representation
  Learning
Separating common from salient patterns with Contrastive Representation Learning
Robin Louiset
Edouard Duchesnay
Antoine Grigis
Pietro Gori
SSL
DRL
35
1
0
19 Feb 2024
Concept-free Causal Disentanglement with Variational Graph Auto-Encoder
Concept-free Causal Disentanglement with Variational Graph Auto-Encoder
Jingyun Feng
Lin Zhang
Lili Yang
BDL
CoGe
CML
21
1
0
17 Nov 2023
Distortion-Disentangled Contrastive Learning
Distortion-Disentangled Contrastive Learning
Jinfeng Wang
Sifan Song
Jionglong Su
S. Kevin Zhou
SSL
41
4
0
09 Mar 2023
From latent dynamics to meaningful representations
From latent dynamics to meaningful representations
Dedi Wang
Yihang Wang
Luke J. Evans
P. Tiwary
AI4CE
25
7
0
02 Sep 2022
Comparing the latent space of generative models
Comparing the latent space of generative models
Andrea Asperti
Valerio Tonelli
DRL
19
11
0
14 Jul 2022
Skimming and Scanning for Untrimmed Video Action Recognition
Skimming and Scanning for Untrimmed Video Action Recognition
Yunyan Hong
Ailing Zeng
Min Li
Cewu Lu
Li Jiang
Qiang Xu
9
0
0
21 Apr 2021
Video Reenactment as Inductive Bias for Content-Motion Disentanglement
Video Reenactment as Inductive Bias for Content-Motion Disentanglement
Juan Felipe Hernandez Albarracin
Adín Ramirez Rivera
22
2
0
30 Jan 2021
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Xiao Liu
Spyridon Thermos
Gabriele Valvano
A. Chartsias
Alison Q. OÑeil
Sotirios A. Tsaftaris
CoGe
DRL
19
18
0
27 Aug 2020
1