ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.14523
  4. Cited By
Model Size Reduction Using Frequency Based Double Hashing for
  Recommender Systems

Model Size Reduction Using Frequency Based Double Hashing for Recommender Systems

28 July 2020
Caojin Zhang
Yicun Liu
Yuanpu Xie
S. Ktena
Alykhan Tejani
Akshay Gupta
Pranay K. Myana
D. Dilipkumar
Suvadip Paul
Ikuhiro Ihara
P. Upadhyaya
Ferenc Huszár
Wenzhe Shi
ArXivPDFHTML

Papers citing "Model Size Reduction Using Frequency Based Double Hashing for Recommender Systems"

26 / 26 papers shown
Title
The Evolution of Embedding Table Optimization and Multi-Epoch Training in Pinterest Ads Conversion
The Evolution of Embedding Table Optimization and Multi-Epoch Training in Pinterest Ads Conversion
Andrew Qiu
Shubham Barhate
Hin Wai Lui
Runze Su
Rafael Rios Müller
Kungang Li
Ling Leng
Han Sun
Shayan Ehsani
Zhifang Liu
31
0
0
08 May 2025
An Enhanced Batch Query Architecture in Real-time Recommendation
An Enhanced Batch Query Architecture in Real-time Recommendation
Qiang Zhang
Zhipeng Teng
Disheng Wu
Jiayin Wang
18
0
0
31 Aug 2024
Deep Feature Embedding for Tabular Data
Deep Feature Embedding for Tabular Data
Yuqian Wu
Hengyi Luo
Raymond S. T. Lee
LMTD
21
4
0
30 Aug 2024
Fine-Grained Embedding Dimension Optimization During Training for
  Recommender Systems
Fine-Grained Embedding Dimension Optimization During Training for Recommender Systems
Qinyi Luo
Penghan Wang
Wei Zhang
Fan Lai
Jiachen Mao
...
Jun Song
Wei-Yu Tsai
Shuai Yang
Yuxi Hu
Xuehai Qian
45
0
0
09 Jan 2024
CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale
  Recommendation Models
CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models
Hailin Zhang
Zirui Liu
Boxuan Chen
Yikai Zhao
Tong Zhao
Tong Yang
Bin Cui
19
10
0
06 Dec 2023
Experimental Analysis of Large-scale Learnable Vector Storage
  Compression
Experimental Analysis of Large-scale Learnable Vector Storage Compression
Hailin Zhang
Penghao Zhao
Xupeng Miao
Yingxia Shao
Zirui Liu
Tong Yang
Bin Cui
19
11
0
27 Nov 2023
Embedding in Recommender Systems: A Survey
Embedding in Recommender Systems: A Survey
Xiangyu Zhao
Maolin Wang
Xinjian Zhao
Jiansheng Li
Shucheng Zhou
Dawei Yin
Qing Li
Jiliang Tang
Ruocheng Guo
AI4TS
36
10
0
28 Oct 2023
Better Generalization with Semantic IDs: A Case Study in Ranking for
  Recommendations
Better Generalization with Semantic IDs: A Case Study in Ranking for Recommendations
Anima Singh
Trung Vu
Nikhil Mehta
Raghunandan H. Keshavan
M. Sathiamoorthy
...
Lukasz Heldt
Li Wei
Devansh Tandon
Ed H. Chi
Xinyang Yi
16
19
0
13 Jun 2023
Extracting Text Representations for Terms and Phrases in Technical
  Domains
Extracting Text Representations for Terms and Phrases in Technical Domains
Francesco Fusco
Diego Antognini
27
0
0
25 May 2023
Pre-train and Search: Efficient Embedding Table Sharding with
  Pre-trained Neural Cost Models
Pre-train and Search: Efficient Embedding Table Sharding with Pre-trained Neural Cost Models
Daochen Zha
Louis Feng
Liangchen Luo
Bhargav Bhushanam
Zirui Liu
...
J. McMahon
Yuzhen Huang
Bryan Clarke
A. Kejariwal
Xia Hu
50
7
0
03 May 2023
Data Leakage via Access Patterns of Sparse Features in Deep
  Learning-based Recommendation Systems
Data Leakage via Access Patterns of Sparse Features in Deep Learning-based Recommendation Systems
H. Hashemi
Wenjie Xiong
Liu Ke
Kiwan Maeng
M. Annavaram
G. E. Suh
Hsien-Hsin S. Lee
11
6
0
12 Dec 2022
Adaptive Low-Precision Training for Embeddings in Click-Through Rate
  Prediction
Adaptive Low-Precision Training for Embeddings in Click-Through Rate Prediction
Shiwei Li
Huifeng Guo
Luyao Hou
Wei Zhang
Xing Tang
Ruiming Tang
Rui Zhang
Rui Li
MQ
95
7
0
12 Dec 2022
DreamShard: Generalizable Embedding Table Placement for Recommender
  Systems
DreamShard: Generalizable Embedding Table Placement for Recommender Systems
Daochen Zha
Louis Feng
Qiaoyu Tan
Zirui Liu
Kwei-Herng Lai
Bhargav Bhushanam
Yuandong Tian
A. Kejariwal
Xia Hu
LMTD
OffRL
15
28
0
05 Oct 2022
A Comprehensive Survey on Trustworthy Recommender Systems
A Comprehensive Survey on Trustworthy Recommender Systems
Wenqi Fan
Xiangyu Zhao
Xiao Chen
Jingran Su
Jingtong Gao
...
Qidong Liu
Yiqi Wang
Hanfeng Xu
Lei Chen
Qing Li
FaML
35
46
0
21 Sep 2022
AutoShard: Automated Embedding Table Sharding for Recommender Systems
AutoShard: Automated Embedding Table Sharding for Recommender Systems
Daochen Zha
Louis Feng
Bhargav Bhushanam
Dhruv Choudhary
Jade Nie
Yuandong Tian
Jay Chae
Yi-An Ma
A. Kejariwal
Xia Hu
22
30
0
12 Aug 2022
Efficient Mixed Dimension Embeddings for Matrix Factorization
Efficient Mixed Dimension Embeddings for Matrix Factorization
D. Beloborodov
Andrei Zimovnov
Petr Molodyk
Dmitrii Kirillov
4
2
0
18 May 2022
Learning to Collide: Recommendation System Model Compression with
  Learned Hash Functions
Learning to Collide: Recommendation System Model Compression with Learned Hash Functions
Benjamin Ghaemmaghami
Mustafa Ozdal
Rakesh Komuravelli
D. Korchev
Dheevatsa Mudigere
Krishnakumar Nair
Maxim Naumov
16
6
0
28 Mar 2022
Learning Compressed Embeddings for On-Device Inference
Learning Compressed Embeddings for On-Device Inference
Niketan Pansare
J. Katukuri
Aditya Arora
F. Cipollone
R. Shaik
Noyan Tokgozoglu
Chandru Venkataraman
24
14
0
18 Mar 2022
RecShard: Statistical Feature-Based Memory Optimization for
  Industry-Scale Neural Recommendation
RecShard: Statistical Feature-Based Memory Optimization for Industry-Scale Neural Recommendation
Geet Sethi
Bilge Acun
Niket Agarwal
Christos Kozyrakis
Caroline Trippel
Carole-Jean Wu
47
66
0
25 Jan 2022
Persia: An Open, Hybrid System Scaling Deep Learning-based Recommenders
  up to 100 Trillion Parameters
Persia: An Open, Hybrid System Scaling Deep Learning-based Recommenders up to 100 Trillion Parameters
Xiangru Lian
Binhang Yuan
Xuefeng Zhu
Yulong Wang
Yongjun He
...
Lei Yuan
Hai-bo Yu
Sen Yang
Ce Zhang
Ji Liu
VLM
17
34
0
10 Nov 2021
Position-based Hash Embeddings For Scaling Graph Neural Networks
Position-based Hash Embeddings For Scaling Graph Neural Networks
Maria Kalantzi
George Karypis
GNN
16
4
0
31 Aug 2021
Binary Code based Hash Embedding for Web-scale Applications
Binary Code based Hash Embedding for Web-scale Applications
Bencheng Yan
Pengjie Wang
Jinquan Liu
Wei-Chao Lin
Kuang-chih Lee
Jian Xu
Bo Zheng
11
19
0
24 Aug 2021
Learning Effective and Efficient Embedding via an Adaptively-Masked
  Twins-based Layer
Learning Effective and Efficient Embedding via an Adaptively-Masked Twins-based Layer
Bencheng Yan
Pengjie Wang
Kai Zhang
Wei Lin
Kuang-chih Lee
Jian Xu
Bo Zheng
22
26
0
24 Aug 2021
Online Learning for Recommendations at Grubhub
Online Learning for Recommendations at Grubhub
A. Egg
OffRL
OnRL
24
9
0
15 Jul 2021
Learnable Embedding Sizes for Recommender Systems
Learnable Embedding Sizes for Recommender Systems
Siyi Liu
Chen Gao
Yihong Chen
Depeng Jin
Yong Li
59
82
0
19 Jan 2021
Learning to Embed Categorical Features without Embedding Tables for
  Recommendation
Learning to Embed Categorical Features without Embedding Tables for Recommendation
Wang-Cheng Kang
D. Cheng
Tiansheng Yao
Xinyang Yi
Ting-Li Chen
Lichan Hong
Ed H. Chi
LMTD
CML
DML
45
68
0
21 Oct 2020
1