Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.14527
Cited By
When and why PINNs fail to train: A neural tangent kernel perspective
28 July 2020
Sifan Wang
Xinling Yu
P. Perdikaris
Re-assign community
ArXiv
PDF
HTML
Papers citing
"When and why PINNs fail to train: A neural tangent kernel perspective"
36 / 336 papers shown
Title
Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
Jeremy Yu
Lu Lu
Xuhui Meng
George Karniadakis
PINN
AI4CE
19
449
0
01 Nov 2021
CAN-PINN: A Fast Physics-Informed Neural Network Based on Coupled-Automatic-Numerical Differentiation Method
P. Chiu
Jian Cheng Wong
C. Ooi
M. Dao
Yew-Soon Ong
PINN
23
205
0
29 Oct 2021
On Computing the Hyperparameter of Extreme Learning Machines: Algorithm and Application to Computational PDEs, and Comparison with Classical and High-Order Finite Elements
S. Dong
Jielin Yang
72
52
0
27 Oct 2021
Fast PDE-constrained optimization via self-supervised operator learning
Sifan Wang
Mohamed Aziz Bhouri
P. Perdikaris
40
28
0
25 Oct 2021
Multi-Objective Loss Balancing for Physics-Informed Deep Learning
Rafael Bischof
M. Kraus
PINN
AI4CE
33
92
0
19 Oct 2021
Physics informed neural networks for continuum micromechanics
Alexander Henkes
Henning Wessels
R. Mahnken
PINN
AI4CE
8
139
0
14 Oct 2021
Physics-informed neural network simulation of multiphase poroelasticity using stress-split sequential training
E. Haghighat
Daniel Amini
R. Juanes
PINN
AI4CE
13
95
0
06 Oct 2021
Improved architectures and training algorithms for deep operator networks
Sifan Wang
Hanwen Wang
P. Perdikaris
AI4CE
47
105
0
04 Oct 2021
CENN: Conservative energy method based on neural networks with subdomains for solving variational problems involving heterogeneous and complex geometries
Yi-Zhou Wang
Jia Sun
Wei Li
Zaiyuan Lu
Yinghua Liu
47
37
0
25 Sep 2021
Learning in Sinusoidal Spaces with Physics-Informed Neural Networks
Jian Cheng Wong
C. Ooi
Abhishek Gupta
Yew-Soon Ong
AI4CE
PINN
SSL
18
76
0
20 Sep 2021
Characterizing possible failure modes in physics-informed neural networks
Aditi S. Krishnapriyan
A. Gholami
Shandian Zhe
Robert M. Kirby
Michael W. Mahoney
PINN
AI4CE
25
607
0
02 Sep 2021
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
27
28
0
30 Aug 2021
Reconstructing a dynamical system and forecasting time series by self-consistent deep learning
Zhe Wang
C. Guet
AI4TS
6
4
0
04 Aug 2021
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
45
209
0
16 Jul 2021
Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks
S. Maddu
D. Sturm
Christian L. Müller
I. Sbalzarini
AI4CE
18
80
0
02 Jul 2021
Lagrangian dual framework for conservative neural network solutions of kinetic equations
H. Hwang
Hwijae Son
9
7
0
23 Jun 2021
Polyconvex anisotropic hyperelasticity with neural networks
Dominik K. Klein
Mauricio Fernández
Robert J. Martin
P. Neff
Oliver Weeger
28
151
0
20 Jun 2021
Interval and fuzzy physics-informed neural networks for uncertain fields
J. Fuhg
Ioannis Kalogeris
A. Fau
N. Bouklas
AI4CE
41
18
0
18 Jun 2021
Long-time integration of parametric evolution equations with physics-informed DeepONets
Sifan Wang
P. Perdikaris
AI4CE
17
117
0
09 Jun 2021
Optimal Transport Based Refinement of Physics-Informed Neural Networks
Vaishnav Tadiparthi
R. Bhattacharya
OT
10
2
0
26 May 2021
Physics-informed neural networks (PINNs) for fluid mechanics: A review
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Karniadakis
PINN
AI4CE
12
1,127
0
20 May 2021
Deep learning in physics: a study of dielectric quasi-cubic particles in a uniform electric field
Zhe Wang
C. Guet
9
5
0
11 May 2021
Mosaic Flows: A Transferable Deep Learning Framework for Solving PDEs on Unseen Domains
Hengjie Wang
R. Planas
Aparna Chandramowlishwaran
Ramin Bostanabad
AI4CE
42
61
0
22 Apr 2021
Physics-informed neural networks for the shallow-water equations on the sphere
Alexander Bihlo
R. Popovych
9
77
0
01 Apr 2021
Solving and Learning Nonlinear PDEs with Gaussian Processes
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
20
153
0
24 Mar 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sifan Wang
Hanwen Wang
P. Perdikaris
AI4CE
38
661
0
19 Mar 2021
Quadratic Residual Networks: A New Class of Neural Networks for Solving Forward and Inverse Problems in Physics Involving PDEs
Jie Bu
Anuj Karpatne
17
47
0
20 Jan 2021
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
28
21
0
13 Jan 2021
Hybrid FEM-NN models: Combining artificial neural networks with the finite element method
Sebastian K. Mitusch
S. Funke
M. Kuchta
AI4CE
26
93
0
04 Jan 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
131
438
0
18 Dec 2020
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
93
126
0
14 Dec 2020
Physics-informed neural networks for myocardial perfusion MRI quantification
R. L. M. V. Herten
A. Chiribiri
M. Breeuwer
M. Veta
C. Scannell
12
43
0
25 Nov 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
45
257
0
18 Nov 2020
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
26
442
0
07 Sep 2020
Physics-informed learning of governing equations from scarce data
Zhao Chen
Yang Liu
Hao-Lun Sun
PINN
AI4CE
6
373
0
05 May 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
180
758
0
13 Mar 2020
Previous
1
2
3
4
5
6
7