Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.15892
Cited By
v1
v2 (latest)
Statistical guarantees for Bayesian uncertainty quantification in non-linear inverse problems with Gaussian process priors
31 July 2020
F. Monard
Richard Nickl
G. Paternain
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Statistical guarantees for Bayesian uncertainty quantification in non-linear inverse problems with Gaussian process priors"
21 / 21 papers shown
Title
Valid Credible Ellipsoids for Linear Functionals by a Renormalized Bernstein-von Mises Theorem
Gustav Rømer
38
0
0
17 Sep 2024
Convergence Rates for the Maximum A Posteriori Estimator in PDE-Regression Models with Random Design
Maximilian Siebel
58
1
0
05 Sep 2024
On the Frequentist Coverage of Bayes Posteriors in Nonlinear Inverse Problems
You-Hyun Baek
Katerina Papagiannouli
Sayan Mukherjee
62
0
0
19 Jul 2024
On the estimation rate of Bayesian PINN for inverse problems
Yi Sun
Debarghya Mukherjee
Yves Atchadé
PINN
110
1
0
21 Jun 2024
Taming Score-Based Diffusion Priors for Infinite-Dimensional Nonlinear Inverse Problems
Lorenzo Baldassari
Ali Siahkoohi
Josselin Garnier
K. Sølna
Maarten V. de Hoop
DiffM
129
2
0
24 May 2024
Deep Gaussian Process Priors for Bayesian Inference in Nonlinear Inverse Problems
Kweku Abraham
Neil Deo
41
5
0
21 Dec 2023
Stability and Statistical Inversion of Travel time Tomography
Ashwin Tarikere
Hanming Zhou
36
1
0
22 Sep 2023
Misspecified Bernstein-Von Mises theorem for hierarchical models
Geerten Koers
Botond Szabó
A. van der Vaart
70
2
0
15 Aug 2023
On posterior consistency of data assimilation with Gaussian process priors: the 2D Navier-Stokes equations
Richard Nickl
E. Titi
49
8
0
16 Jul 2023
Consistent inference for diffusions from low frequency measurements
Richard Nickl
59
8
0
24 Oct 2022
On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions
Afonso S. Bandeira
Antoine Maillard
Richard Nickl
Sven Wang
83
10
0
05 Sep 2022
A Bernstein--von-Mises theorem for the Calderón problem with piecewise constant conductivities
Jan Bohr
57
2
0
16 Jun 2022
Uncertainty Quantification for nonparametric regression using Empirical Bayesian neural networks
Stefan Franssen
Botond Szabó
BDL
UQCV
89
4
0
27 Apr 2022
Gaussian Process Regression in the Flat Limit
Simon Barthelmé
P. Amblard
Nicolas M Tremblay
K. Usevich
GP
36
5
0
04 Jan 2022
Minimax detection of localized signals in statistical inverse problems
Markus Pohlmann
Frank Werner
Axel Munk
45
1
0
10 Dec 2021
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
91
23
0
22 Oct 2021
Uncertainty quantification in the Bradley-Terry-Luce model
Chao Gao
Yandi Shen
A. Zhang
93
22
0
08 Oct 2021
On some information-theoretic aspects of non-linear statistical inverse problems
Richard Nickl
G. Paternain
79
9
0
20 Jul 2021
On log-concave approximations of high-dimensional posterior measures and stability properties in non-linear inverse problems
Jan Bohr
Richard Nickl
57
17
0
17 May 2021
Consistency of Bayesian inference with Gaussian process priors for a parabolic inverse problem
Hanne Kekkonen
52
12
0
24 Mar 2021
Deep learning architectures for nonlinear operator functions and nonlinear inverse problems
Maarten V. de Hoop
Matti Lassas
C. Wong
78
26
0
23 Dec 2019
1