ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.00323
  4. Cited By
Convergence of Sparse Variational Inference in Gaussian Processes
  Regression

Convergence of Sparse Variational Inference in Gaussian Processes Regression

1 August 2020
David R. Burt
C. Rasmussen
Mark van der Wilk
ArXivPDFHTML

Papers citing "Convergence of Sparse Variational Inference in Gaussian Processes Regression"

18 / 18 papers shown
Title
STRIDE: Sparse Techniques for Regression in Deep Gaussian Processes
STRIDE: Sparse Techniques for Regression in Deep Gaussian Processes
Simon Urbainczyk
Aretha L. Teckentrup
Jonas Latz
GP
27
0
0
16 May 2025
Low-rank computation of the posterior mean in Multi-Output Gaussian Processes
Low-rank computation of the posterior mean in Multi-Output Gaussian Processes
Sebastian Esche
Martin Stoll
43
0
0
30 Apr 2025
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
251
0
0
31 Dec 2024
Memory-Based Dual Gaussian Processes for Sequential Learning
Memory-Based Dual Gaussian Processes for Sequential Learning
Paul E. Chang
Prakhar Verma
S. T. John
Arno Solin
Mohammad Emtiyaz Khan
GP
38
4
0
06 Jun 2023
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
43
25
0
24 Jan 2023
Uncertainty quantification for sparse spectral variational
  approximations in Gaussian process regression
Uncertainty quantification for sparse spectral variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
47
5
0
21 Dec 2022
Numerically Stable Sparse Gaussian Processes via Minimum Separation
  using Cover Trees
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
63
7
0
14 Oct 2022
Memory Safe Computations with XLA Compiler
Memory Safe Computations with XLA Compiler
A. Artemev
Tilman Roeder
Mark van der Wilk
40
8
0
28 Jun 2022
Improved Convergence Rates for Sparse Approximation Methods in
  Kernel-Based Learning
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
38
18
0
08 Feb 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
26
12
0
17 Jan 2022
Contraction rates for sparse variational approximations in Gaussian
  process regression
Contraction rates for sparse variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
62
17
0
22 Sep 2021
Barely Biased Learning for Gaussian Process Regression
Barely Biased Learning for Gaussian Process Regression
David R. Burt
A. Artemev
Mark van der Wilk
21
0
0
20 Sep 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
26
107
0
24 Feb 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
  Regression Using Conjugate Gradients
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
23
18
0
16 Feb 2021
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
20
58
0
08 Nov 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
31
60
0
17 May 2020
How Good are Low-Rank Approximations in Gaussian Process Regression?
How Good are Low-Rank Approximations in Gaussian Process Regression?
C. Daskalakis
P. Dellaportas
A. Panos
19
3
0
03 Apr 2020
Sharp analysis of low-rank kernel matrix approximations
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
94
281
0
09 Aug 2012
1