Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.06402
Cited By
SPINN: Synergistic Progressive Inference of Neural Networks over Device and Cloud
14 August 2020
Stefanos Laskaridis
Stylianos I. Venieris
Mario Almeida
Ilias Leontiadis
Nicholas D. Lane
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SPINN: Synergistic Progressive Inference of Neural Networks over Device and Cloud"
38 / 38 papers shown
Title
LimitNet: Progressive, Content-Aware Image Offloading for Extremely Weak Devices & Networks
A. Hojjat
Janek Haberer
Tayyaba Zainab
Olaf Landsiedel
37
3
0
18 Apr 2025
Janus: Collaborative Vision Transformer Under Dynamic Network Environment
Linyi Jiang
Silvery Fu
Yifei Zhu
Bo Li
ViT
141
0
0
14 Feb 2025
AI-Powered Urban Transportation Digital Twin: Methods and Applications
Xuan Di
Yongjie Fu
Mehmet K.Turkcan
Mahshid Ghasemi
Zhaobin Mo
Chengbo Zang
Abhishek Adhikari
Z. Kostić
Gil Zussman
AI4CE
31
0
0
30 Dec 2024
Embedded Distributed Inference of Deep Neural Networks: A Systematic Review
Federico Nicolás Peccia
Oliver Bringmann
28
0
0
06 May 2024
Tiny Models are the Computational Saver for Large Models
Qingyuan Wang
B. Cardiff
Antoine Frappé
Benoît Larras
Deepu John
29
2
0
26 Mar 2024
On the Impact of Black-box Deployment Strategies for Edge AI on Latency and Model Performance
Jaskirat Singh
Emad Fallahzadeh
Bram Adams
Ahmed E. Hassan
MQ
32
3
0
25 Mar 2024
SAWEC: Sensing-Assisted Wireless Edge Computing
Khandaker Foysal Haque
Francesca Meneghello
Md. Ebtidaul Karim
Francesco Restuccia
36
1
0
15 Feb 2024
Real-time Neural Network Inference on Extremely Weak Devices: Agile Offloading with Explainable AI
Kai Huang
Wei Gao
15
35
0
21 Dec 2023
Graft: Efficient Inference Serving for Hybrid Deep Learning with SLO Guarantees via DNN Re-alignment
Jing Wu
Lin Wang
Qirui Jin
Fangming Liu
23
11
0
17 Dec 2023
Synergy: Towards On-Body AI via Tiny AI Accelerator Collaboration on Wearables
Taesik Gong
S. Jang
Utku Günay Acer
F. Kawsar
Chulhong Min
33
2
0
11 Dec 2023
DC-CCL: Device-Cloud Collaborative Controlled Learning for Large Vision Models
Yucheng Ding
Chaoyue Niu
Fan Wu
Shaojie Tang
Chengfei Lyu
Guihai Chen
20
6
0
18 Mar 2023
An Ensemble Mobile-Cloud Computing Method for Affordable and Accurate Glucometer Readout
Navidreza Asadi
M. Goudarzi
14
1
0
04 Jan 2023
Mind Your Heart: Stealthy Backdoor Attack on Dynamic Deep Neural Network in Edge Computing
Tian Dong
Ziyuan Zhang
Han Qiu
Tianwei Zhang
Hewu Li
T. Wang
AAML
18
6
0
22 Dec 2022
AGO: Boosting Mobile AI Inference Performance by Removing Constraints on Graph Optimization
Zhiying Xu
H. Peng
Wei Wang
GNN
18
3
0
02 Dec 2022
On-device Training: A First Overview on Existing Systems
Shuai Zhu
Thiemo Voigt
Jeonggil Ko
Fatemeh Rahimian
29
14
0
01 Dec 2022
The Future of Consumer Edge-AI Computing
Stefanos Laskaridis
Stylianos I. Venieris
Alexandros Kouris
Rui Li
Nicholas D. Lane
37
8
0
19 Oct 2022
Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural Networks on Edge NPUs
Alexandros Kouris
Stylianos I. Venieris
Stefanos Laskaridis
Nicholas D. Lane
30
8
0
27 Sep 2022
Unsupervised Early Exit in DNNs with Multiple Exits
U. HariNarayanN
M. Hanawal
Avinash Bhardwaj
29
10
0
20 Sep 2022
AI Augmented Edge and Fog Computing: Trends and Challenges
Shreshth Tuli
Fatemeh Mirhakimi
Samodha Pallewatta
Syed Zawad
G. Casale
B. Javadi
Feng Yan
Rajkumar Buyya
N. Jennings
19
56
0
01 Aug 2022
Towards Transmission-Friendly and Robust CNN Models over Cloud and Device
Chuntao Ding
Zhichao Lu
F. Xu
Vishnu Naresh Boddeti
Yidong Li
Jiannong Cao
19
14
0
20 Jul 2022
A Survey on Collaborative DNN Inference for Edge Intelligence
Weiqing Ren
Yuben Qu
Chao Dong
Yuqian Jing
Hao Sun
Qihui Wu
Song Guo
28
49
0
16 Jul 2022
Fault-Tolerant Collaborative Inference through the Edge-PRUNE Framework
Jani Boutellier
Bo Tan
J. Nurmi
8
2
0
16 Jun 2022
Predictive Exit: Prediction of Fine-Grained Early Exits for Computation- and Energy-Efficient Inference
Xiangjie Li
Chen Lou
Zhengping Zhu
Yuchi Chen
Yingtao Shen
Yehan Ma
An Zou
22
20
0
09 Jun 2022
SplitPlace: AI Augmented Splitting and Placement of Large-Scale Neural Networks in Mobile Edge Environments
Shreshth Tuli
G. Casale
N. Jennings
14
31
0
21 May 2022
ACE: Towards Application-Centric Edge-Cloud Collaborative Intelligence
Luhui Wang
Cong Zhao
Shusen Yang
Xinyu Yang
Julie McCann
25
1
0
24 Mar 2022
BottleFit: Learning Compressed Representations in Deep Neural Networks for Effective and Efficient Split Computing
Yoshitomo Matsubara
Davide Callegaro
Sameer Singh
Marco Levorato
Francesco Restuccia
17
41
0
07 Jan 2022
Boosting Mobile CNN Inference through Semantic Memory
Yun Li
Chen Zhang
S. Han
Li Lyna Zhang
B. Yin
Yunxin Liu
Mengwei Xu
ObjD
39
16
0
05 Dec 2021
FTPipeHD: A Fault-Tolerant Pipeline-Parallel Distributed Training Framework for Heterogeneous Edge Devices
Yuhao Chen
Qianqian Yang
Shibo He
Zhiguo Shi
Jiming Chen
8
3
0
06 Oct 2021
Smart at what cost? Characterising Mobile Deep Neural Networks in the wild
Mario Almeida
Stefanos Laskaridis
Abhinav Mehrotra
L. Dudziak
Ilias Leontiadis
Nicholas D. Lane
HAI
101
44
0
28 Sep 2021
Complexity-aware Adaptive Training and Inference for Edge-Cloud Distributed AI Systems
Yinghan Long
I. Chakraborty
G. Srinivasan
Kaushik Roy
14
14
0
14 Sep 2021
Auto-Split: A General Framework of Collaborative Edge-Cloud AI
Amin Banitalebi-Dehkordi
Naveen Vedula
J. Pei
Fei Xia
Lanjun Wang
Yong Zhang
22
89
0
30 Aug 2021
OODIn: An Optimised On-Device Inference Framework for Heterogeneous Mobile Devices
Stylianos I. Venieris
Ioannis Panopoulos
I. Venieris
40
14
0
08 Jun 2021
DynO: Dynamic Onloading of Deep Neural Networks from Cloud to Device
Mario Almeida
Stefanos Laskaridis
Stylianos I. Venieris
Ilias Leontiadis
Nicholas D. Lane
13
36
0
20 Apr 2021
Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges
Yoshitomo Matsubara
Marco Levorato
Francesco Restuccia
22
199
0
08 Mar 2021
It's always personal: Using Early Exits for Efficient On-Device CNN Personalisation
Ilias Leontiadis
Stefanos Laskaridis
Stylianos I. Venieris
Nicholas D. Lane
63
29
0
02 Feb 2021
HAPI: Hardware-Aware Progressive Inference
Stefanos Laskaridis
Stylianos I. Venieris
Hyeji Kim
Nicholas D. Lane
9
45
0
10 Aug 2020
ALERT: Accurate Learning for Energy and Timeliness
Chengcheng Wan
M. Santriaji
E. Rogers
H. Hoffmann
Michael Maire
Shan Lu
AI4CE
27
40
0
31 Oct 2019
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
311
1,047
0
10 Feb 2017
1