ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.07180
  4. Cited By
Shuffled Model of Federated Learning: Privacy, Communication and
  Accuracy Trade-offs

Shuffled Model of Federated Learning: Privacy, Communication and Accuracy Trade-offs

17 August 2020
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
Peter Kairouz
A. Suresh
    FedML
ArXivPDFHTML

Papers citing "Shuffled Model of Federated Learning: Privacy, Communication and Accuracy Trade-offs"

8 / 8 papers shown
Title
Stronger Privacy Amplification by Shuffling for Rényi and Approximate
  Differential Privacy
Stronger Privacy Amplification by Shuffling for Rényi and Approximate Differential Privacy
Vitaly Feldman
Audra McMillan
Kunal Talwar
FedML
26
47
0
09 Aug 2022
Optimal Algorithms for Mean Estimation under Local Differential Privacy
Optimal Algorithms for Mean Estimation under Local Differential Privacy
Hilal Asi
Vitaly Feldman
Kunal Talwar
29
41
0
05 May 2022
Differentially Private Aggregation in the Shuffle Model: Almost Central
  Accuracy in Almost a Single Message
Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
Amer Sinha
FedML
65
36
0
27 Sep 2021
On Large-Cohort Training for Federated Learning
On Large-Cohort Training for Federated Learning
Zachary B. Charles
Zachary Garrett
Zhouyuan Huo
Sergei Shmulyian
Virginia Smith
FedML
21
113
0
15 Jun 2021
The Distributed Discrete Gaussian Mechanism for Federated Learning with
  Secure Aggregation
The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation
Peter Kairouz
Ziyu Liu
Thomas Steinke
FedML
27
232
0
12 Feb 2021
Improved Summation from Shuffling
Improved Summation from Shuffling
Borja Balle
James Bell
Adria Gascon
Kobbi Nissim
FedML
48
22
0
24 Sep 2019
Amplification by Shuffling: From Local to Central Differential Privacy
  via Anonymity
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
141
420
0
29 Nov 2018
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
570
0
08 Dec 2012
1