Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.09161
Cited By
NoPeek: Information leakage reduction to share activations in distributed deep learning
20 August 2020
Praneeth Vepakomma
Abhishek Singh
O. Gupta
Ramesh Raskar
MIACV
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NoPeek: Information leakage reduction to share activations in distributed deep learning"
22 / 22 papers shown
Title
A Taxonomy of Attacks and Defenses in Split Learning
Aqsa Shabbir
Halil Ibrahim Kanpak
Alptekin Küpçü
Sinem Sav
41
0
0
09 May 2025
Quantifying Privacy Leakage in Split Inference via Fisher-Approximated Shannon Information Analysis
Ruijun Deng
Zhihui Lu
Qiang Duan
FedML
46
0
0
14 Apr 2025
Theoretical Insights in Model Inversion Robustness and Conditional Entropy Maximization for Collaborative Inference Systems
Song Xia
Yi Yu
Wenhan Yang
Meiwen Ding
Zhuo Chen
Lingyu Duan
Alex C. Kot
Xudong Jiang
56
2
0
01 Mar 2025
Navigating the Designs of Privacy-Preserving Fine-tuning for Large Language Models
Haonan Shi
Tu Ouyang
An Wang
31
0
0
08 Jan 2025
Privacy Protectability: An Information-theoretical Approach
Siping Shi
Bihai Zhang
Dan Wang
23
1
0
25 May 2023
Model Extraction Attacks on Split Federated Learning
Jingtao Li
Adnan Siraj Rakin
Xing Chen
Li Yang
Zhezhi He
Deliang Fan
C. Chakrabarti
FedML
55
5
0
13 Mar 2023
SplitOut: Out-of-the-Box Training-Hijacking Detection in Split Learning via Outlier Detection
Ege Erdogan
Unat Teksen
Mehmet Salih Celiktenyildiz
Alptekin Kupcu
A. E. Cicek
29
4
0
16 Feb 2023
Privacy and Efficiency of Communications in Federated Split Learning
Zongshun Zhang
Andrea Pinto
Valeria Turina
Flavio Esposito
I. Matta
FedML
19
32
0
04 Jan 2023
Scalable Collaborative Learning via Representation Sharing
Frédéric Berdoz
Abhishek Singh
Martin Jaggi
Ramesh Raskar
FedML
19
3
0
20 Nov 2022
Combined Federated and Split Learning in Edge Computing for Ubiquitous Intelligence in Internet of Things: State of the Art and Future Directions
Qiang Duan
Shijing Hu
Ruijun Deng
Zhihui Lu
FedML
23
61
0
20 Jul 2022
LSTMSPLIT: Effective SPLIT Learning based LSTM on Sequential Time-Series Data
Lianlian Jiang
Yuexuan Wang
Wenyi Zheng
Chao Jin
Zengxiang Li
Sin Gee Teo
AI4TS
17
10
0
08 Mar 2022
Assessing Privacy Risks from Feature Vector Reconstruction Attacks
Emily Wenger
Francesca Falzon
Josephine Passananti
Haitao Zheng
Ben Y. Zhao
AAML
17
3
0
11 Feb 2022
Survey: Leakage and Privacy at Inference Time
Marija Jegorova
Chaitanya Kaul
Charlie Mayor
Alison Q. OÑeil
Alexander Weir
Roderick Murray-Smith
Sotirios A. Tsaftaris
PILM
MIACV
17
71
0
04 Jul 2021
Advancements of federated learning towards privacy preservation: from federated learning to split learning
Chandra Thapa
Pathum Chamikara Mahawaga Arachchige
S. Çamtepe
FedML
11
82
0
25 Nov 2020
SplitEasy: A Practical Approach for Training ML models on Mobile Devices
Kamalesh Palanisamy
Vivek Khimani
Moin Hussain Moti
Dimitris Chatzopoulos
4
20
0
09 Nov 2020
The OARF Benchmark Suite: Characterization and Implications for Federated Learning Systems
Sixu Hu
Yuan N. Li
Xu Liu
Q. Li
Zhaomin Wu
Bingsheng He
FedML
11
53
0
14 Jun 2020
On the Global Optima of Kernelized Adversarial Representation Learning
Bashir Sadeghi
Runyi Yu
Vishnu Naresh Boddeti
AAML
59
31
0
16 Oct 2019
A fast algorithm for computing distance correlation
A. Chaudhuri
Wenhao Hu
34
65
0
26 Oct 2018
Secure Face Matching Using Fully Homomorphic Encryption
Vishnu Naresh Boddeti
PICV
CVBM
65
108
0
01 May 2018
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
68
317
0
18 Feb 2014
The affinely invariant distance correlation
J. Dueck
Dominic Edelmann
T. Gneiting
Donald Richards
72
42
0
09 Oct 2012
Measuring and testing dependence by correlation of distances
G. Székely
Maria L. Rizzo
N. K. Bakirov
175
2,577
0
28 Mar 2008
1