ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.09623
  4. Cited By
A Dynamical Central Limit Theorem for Shallow Neural Networks

A Dynamical Central Limit Theorem for Shallow Neural Networks

21 August 2020
Zhengdao Chen
Grant M. Rotskoff
Joan Bruna
Eric Vanden-Eijnden
ArXivPDFHTML

Papers citing "A Dynamical Central Limit Theorem for Shallow Neural Networks"

7 / 7 papers shown
Title
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
50
2
0
30 May 2024
Wide neural networks: From non-gaussian random fields at initialization
  to the NTK geometry of training
Wide neural networks: From non-gaussian random fields at initialization to the NTK geometry of training
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
AI4CE
18
1
0
06 Apr 2023
The Underlying Correlated Dynamics in Neural Training
The Underlying Correlated Dynamics in Neural Training
Rotem Turjeman
Tom Berkov
I. Cohen
Guy Gilboa
19
3
0
18 Dec 2022
Convex Analysis of the Mean Field Langevin Dynamics
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
61
64
0
25 Jan 2022
Convergence proof for stochastic gradient descent in the training of
  deep neural networks with ReLU activation for constant target functions
Convergence proof for stochastic gradient descent in the training of deep neural networks with ReLU activation for constant target functions
Martin Hutzenthaler
Arnulf Jentzen
Katharina Pohl
Adrian Riekert
Luca Scarpa
MLT
34
6
0
13 Dec 2021
Dual Training of Energy-Based Models with Overparametrized Shallow
  Neural Networks
Dual Training of Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Marylou Gabrié
Joan Bruna
Eric Vanden-Eijnden
FedML
32
6
0
11 Jul 2021
Convergence analysis for gradient flows in the training of artificial
  neural networks with ReLU activation
Convergence analysis for gradient flows in the training of artificial neural networks with ReLU activation
Arnulf Jentzen
Adrian Riekert
19
23
0
09 Jul 2021
1