Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.11245
Cited By
v1
v2 (latest)
Deep Networks and the Multiple Manifold Problem
25 August 2020
Sam Buchanan
D. Gilboa
John N. Wright
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Networks and the Multiple Manifold Problem"
31 / 31 papers shown
Title
A Theoretical Study of Neural Network Expressive Power via Manifold Topology
Jiachen Yao
Mayank Goswami
Chao Chen
52
0
0
21 Oct 2024
Quantum Kernel Methods under Scrutiny: A Benchmarking Study
Jan Schnabel
M. Roth
97
8
0
06 Sep 2024
Hardness of Learning Neural Networks under the Manifold Hypothesis
B. Kiani
Jason Wang
Melanie Weber
67
4
0
03 Jun 2024
Better than classical? The subtle art of benchmarking quantum machine learning models
Joseph Bowles
Shahnawaz Ahmed
Maria Schuld
100
76
0
11 Mar 2024
Defining Neural Network Architecture through Polytope Structures of Dataset
Sangmin Lee
Abbas Mammadov
Jong Chul Ye
91
1
0
04 Feb 2024
Upper and lower bounds for the Lipschitz constant of random neural networks
Paul Geuchen
Thomas Heindl
Dominik Stöger
Felix Voigtlaender
AAML
69
0
0
02 Nov 2023
On the Disconnect Between Theory and Practice of Neural Networks: Limits of the NTK Perspective
Jonathan Wenger
Felix Dangel
Agustinus Kristiadi
83
0
0
29 Sep 2023
Deep neural networks architectures from the perspective of manifold learning
German Magai
AAML
AI4CE
56
6
0
06 Jun 2023
Data Representations' Study of Latent Image Manifolds
Ilya Kaufman
Omri Azencot
62
8
0
31 May 2023
Depth Degeneracy in Neural Networks: Vanishing Angles in Fully Connected ReLU Networks on Initialization
Cameron Jakub
Mihai Nica
ODL
23
5
0
20 Feb 2023
Topological Learning in Multi-Class Data Sets
Christopher H. Griffin
Trevor K. Karn
Benjamin Apple
AI4CE
60
0
0
23 Jan 2023
On the Geometry of Reinforcement Learning in Continuous State and Action Spaces
Saket Tiwari
Omer Gottesman
George Konidaris
63
0
0
29 Dec 2022
Effects of Data Geometry in Early Deep Learning
Saket Tiwari
George Konidaris
148
7
0
29 Dec 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
377
50
0
29 Sep 2022
On the Principles of Parsimony and Self-Consistency for the Emergence of Intelligence
Yi Ma
Doris Y. Tsao
H. Shum
138
78
0
11 Jul 2022
Spectral Bias Outside the Training Set for Deep Networks in the Kernel Regime
Benjamin Bowman
Guido Montúfar
70
15
0
06 Jun 2022
The Neural Covariance SDE: Shaped Infinite Depth-and-Width Networks at Initialization
Mufan Li
Mihai Nica
Daniel M. Roy
92
39
0
06 Jun 2022
Memorization and Optimization in Deep Neural Networks with Minimum Over-parameterization
Simone Bombari
Mohammad Hossein Amani
Marco Mondelli
83
26
0
20 May 2022
Topology and geometry of data manifold in deep learning
German Magai
A. Ayzenberg
AAML
59
11
0
19 Apr 2022
Fitting an immersed submanifold to data via Sussmann's orbit theorem
Joshua Hanson
Maxim Raginsky
59
4
0
03 Apr 2022
Deep Learning without Shortcuts: Shaping the Kernel with Tailored Rectifiers
Guodong Zhang
Aleksandar Botev
James Martens
OffRL
80
28
0
15 Mar 2022
Neural Tangent Kernel Beyond the Infinite-Width Limit: Effects of Depth and Initialization
Mariia Seleznova
Gitta Kutyniok
229
20
0
01 Feb 2022
A Johnson--Lindenstrauss Framework for Randomly Initialized CNNs
Ido Nachum
Jan Hkazla
Michael C. Gastpar
Anatoly Khina
55
0
0
03 Nov 2021
Deep Networks Provably Classify Data on Curves
Tingran Wang
Sam Buchanan
D. Gilboa
John N. Wright
71
9
0
29 Jul 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
76
78
0
28 Jun 2021
The Future is Log-Gaussian: ResNets and Their Infinite-Depth-and-Width Limit at Initialization
Mufan Li
Mihai Nica
Daniel M. Roy
110
34
0
07 Jun 2021
Convergence and Implicit Bias of Gradient Flow on Overparametrized Linear Networks
Hancheng Min
Salma Tarmoun
René Vidal
Enrique Mallada
MLT
76
5
0
13 May 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
88
204
0
06 May 2021
Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation from Incomplete Measurements
Tian Tong
Cong Ma
Ashley Prater-Bennette
Erin E. Tripp
Yuejie Chi
93
33
0
29 Apr 2021
Generalized Approach to Matched Filtering using Neural Networks
Jingkai Yan
Mariam Avagyan
R. Colgan
D. Veske
I. Bartos
John N. Wright
Z. Márka
S. Márka
36
21
0
08 Apr 2021
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks
Quynh N. Nguyen
Marco Mondelli
Guido Montúfar
84
83
0
21 Dec 2020
1