ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.12122
  4. Cited By
Multi-scale approach for the prediction of atomic scale properties
v1v2 (latest)

Multi-scale approach for the prediction of atomic scale properties

27 August 2020
Andrea Grisafi
Jigyasa Nigam
Michele Ceriotti
ArXiv (abs)PDFHTML

Papers citing "Multi-scale approach for the prediction of atomic scale properties"

3 / 3 papers shown
Title
FeNNol: an Efficient and Flexible Library for Building
  Force-field-enhanced Neural Network Potentials
FeNNol: an Efficient and Flexible Library for Building Force-field-enhanced Neural Network Potentials
Thomas Plé
Olivier Adjoua
Louis Lagardère
Jean‐Philip Piquemal
167
9
0
02 May 2024
Physics-inspired Equivariant Descriptors of Non-bonded Interactions
Physics-inspired Equivariant Descriptors of Non-bonded Interactions
Kevin K. Huguenin-Dumittan
P. Loche
Haoran Ni
Michele Ceriotti
42
22
0
25 Aug 2023
Efficient Long-Range Convolutions for Point Clouds
Efficient Long-Range Convolutions for Point Clouds
Yifan Peng
Lin Lin
Lexing Ying
Leonardo Zepeda-Núnez
3DPC
42
8
0
11 Oct 2020
1