ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.00725
  4. Cited By
Conditional Constrained Graph Variational Autoencoders for Molecule
  Design

Conditional Constrained Graph Variational Autoencoders for Molecule Design

1 September 2020
Davide Rigoni
Nicoló Navarin
A. Sperduti
    BDL
ArXivPDFHTML

Papers citing "Conditional Constrained Graph Variational Autoencoders for Molecule Design"

6 / 6 papers shown
Title
Interpreting Equivariant Representations
Interpreting Equivariant Representations
Andreas Abildtrup Hansen
Anna Calissano
Aasa Feragen
58
1
0
23 Jan 2024
A Deep Learning Approach to the Prediction of Drug Side-Effects on
  Molecular Graphs
A Deep Learning Approach to the Prediction of Drug Side-Effects on Molecular Graphs
P. Bongini
Elisa Messori
Niccolò Pancino
Monica Bianchini
GNN
OOD
23
2
0
30 Nov 2022
Conditional $β$-VAE for De Novo Molecular Generation
Conditional βββ-VAE for De Novo Molecular Generation
Ryan J. Richards
A. Groener
BDL
DRL
24
10
0
01 May 2022
Molecular graph generation with Graph Neural Networks
Molecular graph generation with Graph Neural Networks
P. Bongini
Monica Bianchini
F. Scarselli
GNN
30
136
0
14 Dec 2020
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
197
633
0
29 Nov 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
239
1,340
0
12 Feb 2018
1