ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.00802
  4. Cited By
Estimating the Brittleness of AI: Safety Integrity Levels and the Need
  for Testing Out-Of-Distribution Performance

Estimating the Brittleness of AI: Safety Integrity Levels and the Need for Testing Out-Of-Distribution Performance

2 September 2020
A. Lohn
ArXivPDFHTML

Papers citing "Estimating the Brittleness of AI: Safety Integrity Levels and the Need for Testing Out-Of-Distribution Performance"

4 / 4 papers shown
Title
Fixing the train-test resolution discrepancy: FixEfficientNet
Fixing the train-test resolution discrepancy: FixEfficientNet
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
AAML
189
110
0
18 Mar 2020
Benchmarking Adversarial Robustness
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
23
36
0
26 Dec 2019
ComDefend: An Efficient Image Compression Model to Defend Adversarial
  Examples
ComDefend: An Efficient Image Compression Model to Defend Adversarial Examples
Xiaojun Jia
Xingxing Wei
Xiaochun Cao
H. Foroosh
AAML
58
264
0
30 Nov 2018
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
278
2,888
0
15 Sep 2016
1