ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.03228
  4. Cited By
Information Theoretic Meta Learning with Gaussian Processes

Information Theoretic Meta Learning with Gaussian Processes

7 September 2020
Michalis K. Titsias
Francisco J. R. Ruiz
Sotirios Nikoloutsopoulos
Alexandre Galashov
    FedML
ArXivPDFHTML

Papers citing "Information Theoretic Meta Learning with Gaussian Processes"

11 / 11 papers shown
Title
Federated Neural Nonparametric Point Processes
Federated Neural Nonparametric Point Processes
Hui Chen
Hengyu Liu
Hengyu Liu
Xuhui Fan
Zhilin Zhao
Feng Zhou
Christopher J. Quinn
Longbing Cao
FedML
46
0
0
08 Oct 2024
Towards a population-informed approach to the definition of data-driven
  models for structural dynamics
Towards a population-informed approach to the definition of data-driven models for structural dynamics
G. Tsialiamanis
N. Dervilis
D. Wagg
K. Worden
AI4CE
43
5
0
19 Jul 2023
A Meta-Learning Approach to Population-Based Modelling of Structures
A Meta-Learning Approach to Population-Based Modelling of Structures
G. Tsialiamanis
N. Dervilis
D. Wagg
K. Worden
18
0
0
15 Feb 2023
Non-Gaussian Gaussian Processes for Few-Shot Regression
Non-Gaussian Gaussian Processes for Few-Shot Regression
Marcin Sendera
Jacek Tabor
A. Nowak
Andrzej Bedychaj
Massimiliano Patacchiola
Tomasz Trzciñski
Przemysław Spurek
Maciej Ziȩba
23
19
0
26 Oct 2021
ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous
  Meta-Learning
ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous Meta-Learning
Zhe Wang
J. E. Grigsby
Arshdeep Sekhon
Yanjun Qi
59
4
0
27 Sep 2021
Meta-learning Amidst Heterogeneity and Ambiguity
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
39
1
0
05 Jul 2021
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma
  Augmented Gaussian Processes
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
35
63
0
20 Jul 2020
TaskNorm: Rethinking Batch Normalization for Meta-Learning
TaskNorm: Rethinking Batch Normalization for Meta-Learning
J. Bronskill
Jonathan Gordon
James Requeima
Sebastian Nowozin
Richard Turner
71
89
0
06 Mar 2020
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
231
500
0
11 Jun 2018
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
178
666
0
07 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
508
11,727
0
09 Mar 2017
1