ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.03294
  4. Cited By
GraphNorm: A Principled Approach to Accelerating Graph Neural Network
  Training

GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training

7 September 2020
Tianle Cai
Shengjie Luo
Keyulu Xu
Di He
Tie-Yan Liu
Liwei Wang
    GNN
ArXivPDFHTML

Papers citing "GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training"

22 / 22 papers shown
Title
MVGT: A Multi-view Graph Transformer Based on Spatial Relations for EEG Emotion Recognition
MVGT: A Multi-view Graph Transformer Based on Spatial Relations for EEG Emotion Recognition
Yanjie Cui
Xiaohong Liu
Jing Liang
Yamin Fu
57
1
0
17 Jan 2025
Logical Distillation of Graph Neural Networks
Logical Distillation of Graph Neural Networks
Alexander Pluska
Pascal Welke
Thomas Gärtner
Sagar Malhotra
26
0
0
11 Jun 2024
Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction
Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction
Sunwoong Yang
Ricardo Vinuesa
Namwoo Kang
AI4CE
41
4
0
06 Jun 2024
Contextualized Messages Boost Graph Representations
Contextualized Messages Boost Graph Representations
Brian Godwin Lim
Galvin Brice Lim
Renzo Roel Tan
Kazushi Ikeda
AI4CE
62
1
0
19 Mar 2024
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
20
52
0
28 Apr 2023
Quality evaluation of point clouds: a novel no-reference approach using
  transformer-based architecture
Quality evaluation of point clouds: a novel no-reference approach using transformer-based architecture
M. Tliba
A. Chetouani
G. Valenzise
Frederic Dufaux
3DPC
11
1
0
15 Mar 2023
Technical report: Graph Neural Networks go Grammatical
Technical report: Graph Neural Networks go Grammatical
Jason Piquenot
Aldo Moscatelli
Maxime Bérar
Pierre Héroux
R. Raveaux
Jean-Yves Ramel
Sébastien Adam
23
0
0
02 Mar 2023
Connectivity Optimized Nested Graph Networks for Crystal Structures
Connectivity Optimized Nested Graph Networks for Crystal Structures
R. Ruff
Patrick Reiser
Jan Stuhmer
Pascal Friederich
GNN
21
10
0
27 Feb 2023
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step
  Inference
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference
N. Durasov
Nik Dorndorf
Hieu M. Le
Pascal Fua
UQCV
15
10
0
21 Nov 2022
RSC: Accelerating Graph Neural Networks Training via Randomized Sparse
  Computations
RSC: Accelerating Graph Neural Networks Training via Randomized Sparse Computations
Zirui Liu
Sheng-Wei Chen
Kaixiong Zhou
Daochen Zha
Xiao Huang
Xia Hu
29
14
0
19 Oct 2022
From Local to Global: Spectral-Inspired Graph Neural Networks
From Local to Global: Spectral-Inspired Graph Neural Networks
Ningyuan Huang
Soledad Villar
Carey E. Priebe
Da Zheng
Cheng-Fu Huang
Lin F. Yang
Vladimir Braverman
18
14
0
24 Sep 2022
Metric Based Few-Shot Graph Classification
Metric Based Few-Shot Graph Classification
Donato Crisostomi
Simone Antonelli
Valentino Maiorca
Luca Moschella
R. Marin
Emanuele Rodolà
22
5
0
08 Jun 2022
Raising the Bar in Graph-level Anomaly Detection
Raising the Bar in Graph-level Anomaly Detection
Chen Qiu
Marius Kloft
Stephan Mandt
Maja R. Rudolph
22
60
0
27 May 2022
FairNorm: Fair and Fast Graph Neural Network Training
FairNorm: Fair and Fast Graph Neural Network Training
Öykü Deniz Köse
Yanning Shen
AI4CE
11
4
0
20 May 2022
GRPE: Relative Positional Encoding for Graph Transformer
GRPE: Relative Positional Encoding for Graph Transformer
Wonpyo Park
Woonggi Chang
Donggeon Lee
Juntae Kim
Seung-won Hwang
39
74
0
30 Jan 2022
Training Graph Neural Networks with 1000 Layers
Training Graph Neural Networks with 1000 Layers
Guohao Li
Matthias Muller
Bernard Ghanem
V. Koltun
GNN
AI4CE
34
235
0
14 Jun 2021
Do Transformers Really Perform Bad for Graph Representation?
Do Transformers Really Perform Bad for Graph Representation?
Chengxuan Ying
Tianle Cai
Shengjie Luo
Shuxin Zheng
Guolin Ke
Di He
Yanming Shen
Tie-Yan Liu
GNN
23
432
0
09 Jun 2021
Calibrating and Improving Graph Contrastive Learning
Calibrating and Improving Graph Contrastive Learning
Kaili Ma
Haochen Yang
Han Yang
Yongqiang Chen
James Cheng
35
6
0
27 Jan 2021
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
186
913
0
02 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
229
1,941
0
09 Jun 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
162
1,775
0
02 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,811
0
25 Nov 2016
1