Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.04544
Cited By
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
7 September 2020
L. McClenny
U. Braga-Neto
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism"
43 / 43 papers shown
Title
Physics-informed solution reconstruction in elasticity and heat transfer using the explicit constraint force method
Conor Rowan
K. Maute
Alireza Doostan
AI4CE
33
0
0
08 May 2025
Anant-Net: Breaking the Curse of Dimensionality with Scalable and Interpretable Neural Surrogate for High-Dimensional PDEs
Sidharth S. Menon
Ameya D. Jagtap
PINN
78
0
0
06 May 2025
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
76
0
0
25 Apr 2025
Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
Zongren Zou
Zhicheng Wang
George Karniadakis
PINN
AI4CE
65
2
0
08 Mar 2025
Unraveling particle dark matter with Physics-Informed Neural Networks
M.P. Bento
H.B. Câmara
J.F. Seabra
53
0
0
24 Feb 2025
The Finite Element Neural Network Method: One Dimensional Study
Mohammed Abda
Elsa Piollet
Christopher Blake
Frédérick P. Gosselin
56
0
0
21 Jan 2025
ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning
Nilo Schwencke
Cyril Furtlehner
64
1
0
14 Dec 2024
ADAM-SINDy: An Efficient Optimization Framework for Parameterized Nonlinear Dynamical System Identification
Siva Viknesh
Younes Tatari
Amirhossein Arzani
26
1
0
21 Oct 2024
Enhanced physics-informed neural networks (PINNs) for high-order power grid dynamics
Vineet Jagadeesan Nair
PINN
38
0
0
10 Oct 2024
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
22
2
0
04 Oct 2024
CMINNs: Compartment Model Informed Neural Networks -- Unlocking Drug Dynamics
Nazanin Ahmadi Daryakenari
Shupeng Wang
George Karniadakis
63
3
0
19 Sep 2024
KAN: Kolmogorov-Arnold Networks
Ziming Liu
Yixuan Wang
Sachin Vaidya
Fabian Ruehle
James Halverson
Marin Soljacic
Thomas Y. Hou
Max Tegmark
72
460
0
30 Apr 2024
Investigating Guiding Information for Adaptive Collocation Point Sampling in PINNs
Jose Florido
He-Nan Wang
Amirul Khan
P. Jimack
29
2
0
18 Apr 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
18
17
0
05 Jan 2024
Transfer learning for improved generalizability in causal physics-informed neural networks for beam simulations
Taniya Kapoor
Hongrui Wang
Alfredo Núñez
R. Dollevoet
AI4CE
PINN
6
15
0
01 Nov 2023
Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology
Qingsong Xu
Yilei Shi
Jonathan Bamber
Ye Tuo
Ralf Ludwig
Xiao Xiang Zhu
AI4CE
18
9
0
08 Oct 2023
Learning Specialized Activation Functions for Physics-informed Neural Networks
Honghui Wang
Lu Lu
Shiji Song
Gao Huang
PINN
AI4CE
8
11
0
08 Aug 2023
Auxiliary-Tasks Learning for Physics-Informed Neural Network-Based Partial Differential Equations Solving
Junjun Yan
Xinhai Chen
Zhichao Wang
Enqiang Zhou
Jie Liu
PINN
AI4CE
24
1
0
12 Jul 2023
Learning Koopman Operators with Control Using Bi-level Optimization
Daning Huang
Abhinav Pandey
Yin Yu
Junyi Geng
AI4CE
11
3
0
12 Jul 2023
Temporal Difference Learning for High-Dimensional PIDEs with Jumps
Liwei Lu
Hailong Guo
Xueqing Yang
Yi Zhu
AI4CE
10
6
0
06 Jul 2023
Residual-based attention and connection to information bottleneck theory in PINNs
Sokratis J. Anagnostopoulos
Juan Diego Toscano
Nikos Stergiopulos
George Karniadakis
17
20
0
01 Jul 2023
GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs
Yanlai Chen
Shawn Koohy
PINN
AI4CE
18
24
0
27 Mar 2023
PINN Training using Biobjective Optimization: The Trade-off between Data Loss and Residual Loss
Fabian Heldmann
Sarah Treibert
Matthias Ehrhardt
K. Klamroth
22
20
0
03 Feb 2023
Failure-informed adaptive sampling for PINNs, Part II: combining with re-sampling and subset simulation
Zhi-Hao Gao
Tao Tang
Liang Yan
Tao Zhou
17
18
0
03 Feb 2023
Deep Learning and Computational Physics (Lecture Notes)
Deep Ray
Orazio Pinti
Assad A. Oberai
PINN
AI4CE
19
7
0
03 Jan 2023
Physics-informed Neural Networks with Unknown Measurement Noise
Philipp Pilar
Niklas Wahlström
PINN
18
6
0
28 Nov 2022
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
18
47
0
14 Nov 2022
A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High Level Accuracy and Efficiency
Weilong Guan
Kai-Ping Yang
Yinsheng Chen
Zhong Guan
PINN
AI4CE
8
12
0
19 Oct 2022
Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural Networks on Coupled Ordinary Differential Equations
Alexander New
B. Eng
A. Timm
A. Gearhart
12
4
0
14 Oct 2022
Failure-informed adaptive sampling for PINNs
Zhiwei Gao
Liang Yan
Tao Zhou
16
76
0
01 Oct 2022
Solving Elliptic Problems with Singular Sources using Singularity Splitting Deep Ritz Method
Tianhao Hu
Bangti Jin
Zhi Zhou
21
6
0
07 Sep 2022
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
M. Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
16
351
0
21 Jul 2022
Scalable algorithms for physics-informed neural and graph networks
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
PINN
AI4CE
59
39
0
16 May 2022
Bayesian Physics-Informed Neural Networks for real-world nonlinear dynamical systems
K. Linka
Amelie Schäfer
Xuhui Meng
Zongren Zou
George Karniadakis
E. Kuhl
OOD
PINN
AI4CE
22
109
0
12 May 2022
Improved Training of Physics-Informed Neural Networks with Model Ensembles
Katsiaryna Haitsiukevich
Alexander Ilin
PINN
22
23
0
11 Apr 2022
Physics-informed neural networks for non-Newtonian fluid thermo-mechanical problems: an application to rubber calendering process
Thi Nguyen Khoa Nguyen
T. Dairay
Raphael Meunier
Mathilde Mougeot
PINN
AI4CE
67
29
0
31 Jan 2022
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
30
377
0
06 Nov 2021
Solving Partial Differential Equations with Point Source Based on Physics-Informed Neural Networks
Xiang Huang
Hongsheng Liu
Beiji Shi
Zidong Wang
Kan Yang
...
Jing Zhou
Fan Yu
Bei Hua
Lei Chen
Bin Dong
11
20
0
02 Nov 2021
Multi-Objective Loss Balancing for Physics-Informed Deep Learning
Rafael Bischof
M. Kraus
PINN
AI4CE
20
88
0
19 Oct 2021
Improved architectures and training algorithms for deep operator networks
Sifan Wang
Hanwen Wang
P. Perdikaris
AI4CE
42
103
0
04 Oct 2021
Long-time integration of parametric evolution equations with physics-informed DeepONets
Sifan Wang
P. Perdikaris
AI4CE
17
117
0
09 Jun 2021
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
13
39
0
03 May 2021
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,878
0
15 Sep 2016
1