ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.06516
  4. Cited By
Justicia: A Stochastic SAT Approach to Formally Verify Fairness

Justicia: A Stochastic SAT Approach to Formally Verify Fairness

14 September 2020
Bishwamittra Ghosh
D. Basu
Kuldeep S. Meel
ArXivPDFHTML

Papers citing "Justicia: A Stochastic SAT Approach to Formally Verify Fairness"

9 / 9 papers shown
Title
Conformal Prediction: A Theoretical Note and Benchmarking Transductive Node Classification in Graphs
Conformal Prediction: A Theoretical Note and Benchmarking Transductive Node Classification in Graphs
Pranav Maneriker
Aditya T. Vadlamani
Anutam Srinivasan
Yuntian He
Ali Payani
Srinivasan Parthasarathy
33
0
0
26 Sep 2024
An Information-Flow Perspective on Algorithmic Fairness
An Information-Flow Perspective on Algorithmic Fairness
Samuel Teuber
Bernhard Beckert
FaML
13
0
0
15 Dec 2023
The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
  Networks
The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural Networks
Luca Marzari
Davide Corsi
Ferdinando Cicalese
Alessandro Farinelli
AAML
40
16
0
17 Jan 2023
Certifying Fairness of Probabilistic Circuits
Certifying Fairness of Probabilistic Circuits
Nikil Selvam
Guy Van den Broeck
YooJung Choi
FaML
TPM
15
6
0
05 Dec 2022
Explainable Global Fairness Verification of Tree-Based Classifiers
Explainable Global Fairness Verification of Tree-Based Classifiers
Stefano Calzavara
Lorenzo Cazzaro
Claudio Lucchese
Federico Marcuzzi
40
2
0
27 Sep 2022
Adaptive Fairness Improvement Based on Causality Analysis
Adaptive Fairness Improvement Based on Causality Analysis
Mengdi Zhang
Jun Sun
24
31
0
15 Sep 2022
Verifying Fairness in Quantum Machine Learning
Verifying Fairness in Quantum Machine Learning
J. Guan
Wang Fang
Mingsheng Ying
FaML
24
11
0
22 Jul 2022
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
349
4,237
0
23 Aug 2019
Learning Certifiably Optimal Rule Lists for Categorical Data
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
62
195
0
06 Apr 2017
1