ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.06680
  4. Cited By
SML: Semantic Meta-learning for Few-shot Semantic Segmentation

SML: Semantic Meta-learning for Few-shot Semantic Segmentation

14 September 2020
Ayyappa Kumar Pambala
Titir Dutta
Soma Biswas
ArXivPDFHTML

Papers citing "SML: Semantic Meta-learning for Few-shot Semantic Segmentation"

4 / 4 papers shown
Title
MFNet: Multi-class Few-shot Segmentation Network with Pixel-wise Metric
  Learning
MFNet: Multi-class Few-shot Segmentation Network with Pixel-wise Metric Learning
Miao Zhang
Miaojing Shi
Li Li
VLM
35
20
0
30 Oct 2021
PDFNet: Pointwise Dense Flow Network for Urban-Scene Segmentation
PDFNet: Pointwise Dense Flow Network for Urban-Scene Segmentation
Venkata Satya Sai Ajay Daliparthi
3DPC
19
0
0
21 Sep 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
281
11,677
0
09 Mar 2017
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
437
15,631
0
02 Nov 2015
1