ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.07476
  4. Cited By
Path Planning using Neural A* Search

Path Planning using Neural A* Search

16 September 2020
Ryo Yonetani
Tatsunori Taniai
M. Barekatain
Mai Nishimura
Asako Kanezaki
    3DPC
ArXivPDFHTML

Papers citing "Path Planning using Neural A* Search"

14 / 14 papers shown
Title
Physics-informed Temporal Difference Metric Learning for Robot Motion Planning
Physics-informed Temporal Difference Metric Learning for Robot Motion Planning
Ruiqi Ni
Zherong Pan
A. H. Qureshi
SSL
39
0
0
09 May 2025
NMPCB: A Lightweight and Safety-Critical Motion Control Framework
NMPCB: A Lightweight and Safety-Critical Motion Control Framework
Longze Zheng
Qinghe Liu
42
0
0
03 May 2025
Towards Learning Scalable Agile Dynamic Motion Planning for Robosoccer Teams with Policy Optimization
Towards Learning Scalable Agile Dynamic Motion Planning for Robosoccer Teams with Policy Optimization
Brandon Ho
Batuhan Altundas
Matthew C. Gombolay
79
0
0
08 Feb 2025
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Chen Wang
Kaiyi Ji
Junyi Geng
Zhongqiang Ren
Taimeng Fu
...
Yi Du
Qihang Li
Yuqing Yang
Xiao Lin
Zhipeng Zhao
SSL
86
9
0
28 Jan 2025
Multi-robot Task Allocation and Path Planning with Maximum Range
  Constraints
Multi-robot Task Allocation and Path Planning with Maximum Range Constraints
Gang Xu
Yuchen Wu
Sheng Tao
Yifan Yang
Tao Liu
Tao Huang
Huifeng Wu
Yong Liu
36
0
0
10 Sep 2024
SLOPE: Search with Learned Optimal Pruning-based Expansion
SLOPE: Search with Learned Optimal Pruning-based Expansion
Davor Bokan
Zlatan Ajanović
B. Lacevic
19
1
0
07 Jun 2024
Learning to navigate efficiently and precisely in real environments
Learning to navigate efficiently and precisely in real environments
G. Bono
Hervé Poirier
L. Antsfeld
G. Monaci
Boris Chidlovskii
Christian Wolf
21
2
0
25 Jan 2024
LLM A*: Human in the Loop Large Language Models Enabled A* Search for Robotics
LLM A*: Human in the Loop Large Language Models Enabled A* Search for Robotics
Hengjia Xiao
Peng Wang
Mingzhe Yu
Mattia Robbiani
23
21
0
04 Dec 2023
Optimize Planning Heuristics to Rank, not to Estimate Cost-to-Goal
Optimize Planning Heuristics to Rank, not to Estimate Cost-to-Goal
Leah A. Chrestien
Tomás Pevný
Stefan Edelkamp
Antonín Komenda
36
9
0
30 Oct 2023
E(2)-Equivariant Graph Planning for Navigation
E(2)-Equivariant Graph Planning for Navigation
Linfeng Zhao
Hongyu Li
T. Padır
Huaizu Jiang
Lawson L. S. Wong
25
6
0
22 Sep 2023
Non-Trivial Query Sampling For Efficient Learning To Plan
Non-Trivial Query Sampling For Efficient Learning To Plan
S. Joshi
Panagiotis Tsiotras
26
0
0
12 Mar 2023
DDPEN: Trajectory Optimisation With Sub Goal Generation Model
DDPEN: Trajectory Optimisation With Sub Goal Generation Model
A. Gamayunov
A. Postnikov
Gonzalo Ferrer
17
0
0
18 Jan 2023
Planning from Pixels in Environments with Combinatorially Hard Search
  Spaces
Planning from Pixels in Environments with Combinatorially Hard Search Spaces
Marco Bagatella
Miroslav Olsák
Michal Rolínek
Georg Martius
OffRL
21
6
0
12 Oct 2021
Neural Weighted A*: Learning Graph Costs and Heuristics with
  Differentiable Anytime A*
Neural Weighted A*: Learning Graph Costs and Heuristics with Differentiable Anytime A*
Alberto Archetti
Marco Cannici
Matteo Matteucci
17
4
0
04 May 2021
1