ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.07896
  4. Cited By
Captum: A unified and generic model interpretability library for PyTorch

Captum: A unified and generic model interpretability library for PyTorch

16 September 2020
Narine Kokhlikyan
Vivek Miglani
Miguel Martin
Edward Wang
B. Alsallakh
Jonathan Reynolds
Alexander Melnikov
Natalia Kliushkina
Carlos Araya
Siqi Yan
Orion Reblitz-Richardson
    FAtt
ArXiv (abs)PDFHTML

Papers citing "Captum: A unified and generic model interpretability library for PyTorch"

50 / 423 papers shown
Title
One Wave To Explain Them All: A Unifying Perspective On Feature Attribution
One Wave To Explain Them All: A Unifying Perspective On Feature Attribution
Gabriel Kasmi
Amandine Brunetto
Thomas Fel
Jayneel Parekh
AAMLFAtt
332
0
0
02 Oct 2024
A Methodology for Explainable Large Language Models with Integrated
  Gradients and Linguistic Analysis in Text Classification
A Methodology for Explainable Large Language Models with Integrated Gradients and Linguistic Analysis in Text Classification
Marina Ribeiro
Bárbara Malcorra
Natália B. Mota
Rodrigo Wilkens
Aline Villavicencio
Lilian C. Hubner
César Rennó-Costa
74
3
0
30 Sep 2024
Enhancing Feature Selection and Interpretability in AI Regression Tasks
  Through Feature Attribution
Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution
Alexander Hinterleitner
Thomas Bartz-Beielstein
Richard Schulz
Sebastian Spengler
Thomas Winter
Christoph Leitenmeier
171
4
0
25 Sep 2024
Y-Drop: A Conductance based Dropout for fully connected layers
Y-Drop: A Conductance based Dropout for fully connected layers
Efthymios Georgiou
Georgios Paraskevopoulos
Alexandros Potamianos
158
0
0
11 Sep 2024
NeurLZ: An Online Neural Learning-Based Method to Enhance Scientific Lossy Compression
NeurLZ: An Online Neural Learning-Based Method to Enhance Scientific Lossy CompressionInternational Conference on Supercomputing (ICS), 2024
Wenqi Jia
Youyuan Liu
Zhewen Hu
Jinzhen Wang
Boyuan Zhang
...
Sian Jin
Miao Yin
Daoce Wang
Jiannan Tian
Miao Yin
AI4CE
206
0
0
09 Sep 2024
Visualizing Spatial Semantics of Dimensionally Reduced Text Embeddings
Visualizing Spatial Semantics of Dimensionally Reduced Text Embeddings
Wei Liu
Chris North
Rebecca Faust
122
2
0
06 Sep 2024
Improving Robustness of Spectrogram Classifiers with Neural Stochastic
  Differential Equations
Improving Robustness of Spectrogram Classifiers with Neural Stochastic Differential EquationsInternational Workshop on Machine Learning for Signal Processing (MLSP), 2024
Joel Brogan
Olivera Kotevska
Anibely Torres
S. Jha
Mark Adams
121
0
0
03 Sep 2024
Explanation Space: A New Perspective into Time Series Interpretability
Explanation Space: A New Perspective into Time Series Interpretability
Shahbaz Rezaei
Xin Liu
AI4TS
505
3
0
02 Sep 2024
Explainable Hierarchical Urban Representation Learning for Commuting
  Flow Prediction
Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction
Mingfei Cai
Y. Pang
Y. Sekimoto
AI4TS
190
0
0
27 Aug 2024
Why Antiwork: A RoBERTa-Based System for Work-Related Stress
  Identification and Leading Factor Analysis
Why Antiwork: A RoBERTa-Based System for Work-Related Stress Identification and Leading Factor Analysis
Tao Lu
Muzhe Wu
Xinyi Lu
Siyuan Xu
Shuyu Zhan
Anuj Tambwekar
Emily Mower Provost
52
1
0
24 Aug 2024
iSee: Advancing Multi-Shot Explainable AI Using Case-based
  Recommendations
iSee: Advancing Multi-Shot Explainable AI Using Case-based RecommendationsEuropean Conference on Artificial Intelligence (ECAI), 2024
A. Wijekoon
Nirmalie Wiratunga
D. Corsar
Kyle Martin
Ikechukwu Nkisi-Orji
Chamath Palihawadana
Marta Caro-Martínez
Belén Díaz-Agudo
Derek Bridge
A. Liret
147
0
0
23 Aug 2024
Hierarchical Spatio-Temporal State-Space Modeling for fMRI Analysis
Hierarchical Spatio-Temporal State-Space Modeling for fMRI AnalysisAnnual International Conference on Research in Computational Molecular Biology (RECOMB), 2024
Yuxiang Wei
A. Abrol
Reihaneh Hassanzadeh
Mamba
305
5
0
23 Aug 2024
LCE: A Framework for Explainability of DNNs for Ultrasound Image Based
  on Concept Discovery
LCE: A Framework for Explainability of DNNs for Ultrasound Image Based on Concept Discovery
Weiji Kong
Xun Gong
Juan Wang
124
2
0
19 Aug 2024
S-RAF: A Simulation-Based Robustness Assessment Framework for
  Responsible Autonomous Driving
S-RAF: A Simulation-Based Robustness Assessment Framework for Responsible Autonomous Driving
Daniel Omeiza
Pratik Somaiya
Jo-Ann Pattinson
Carolyn Ten-Holter
Jack Stilgoe
Marina Jirotka
Lars Kunze
142
1
0
16 Aug 2024
An Effective Information Theoretic Framework for Channel Pruning
An Effective Information Theoretic Framework for Channel Pruning
Yihao Chen
Zefang Wang
173
9
0
14 Aug 2024
Comgra: A Tool for Analyzing and Debugging Neural Networks
Comgra: A Tool for Analyzing and Debugging Neural Networks
Florian Dietz
Sophie Fellenz
Dietrich Klakow
Marius Kloft
86
0
0
31 Jul 2024
Faithful and Plausible Natural Language Explanations for Image Classification: A Pipeline Approach
Faithful and Plausible Natural Language Explanations for Image Classification: A Pipeline Approach
Adam Wojciechowski
Mateusz Lango
Ondrej Dusek
FAtt
188
3
0
30 Jul 2024
BEExAI: Benchmark to Evaluate Explainable AI
BEExAI: Benchmark to Evaluate Explainable AI
Samuel Sithakoul
Sara Meftah
Clément Feutry
226
15
0
29 Jul 2024
Revisiting the robustness of post-hoc interpretability methods
Revisiting the robustness of post-hoc interpretability methods
Jiawen Wei
Hugues Turbé
G. Mengaldo
AAML
312
7
0
29 Jul 2024
Effective Large Language Model Debugging with Best-first Tree Search
Effective Large Language Model Debugging with Best-first Tree Search
Jialin Song
Jonathan Raiman
Bryan Catanzaro
LRM
135
0
0
26 Jul 2024
Interpreting artificial neural networks to detect genome-wide association signals for complex traits
Interpreting artificial neural networks to detect genome-wide association signals for complex traits
Burak Yelmen
Maris Alver
Estonian Biobank Research Team
Flora Jay
L. Milani
Lili Milani
267
2
0
26 Jul 2024
NeuSemSlice: Towards Effective DNN Model Maintenance via Neuron-level Semantic Slicing
NeuSemSlice: Towards Effective DNN Model Maintenance via Neuron-level Semantic Slicing
Shide Zhou
Tianlin Li
Yihao Huang
Ling Shi
Kailong Wang
Yang Liu
Huaimin Wang
208
1
0
26 Jul 2024
Explaining the Model, Protecting Your Data: Revealing and Mitigating the
  Data Privacy Risks of Post-Hoc Model Explanations via Membership Inference
Explaining the Model, Protecting Your Data: Revealing and Mitigating the Data Privacy Risks of Post-Hoc Model Explanations via Membership Inference
Catherine Huang
Martin Pawelczyk
Himabindu Lakkaraju
AAML
138
2
0
24 Jul 2024
Explanation Regularisation through the Lens of Attributions
Explanation Regularisation through the Lens of Attributions
Pedro Ferreira
Wilker Aziz
Ivan Titov
447
2
0
23 Jul 2024
The Rlign Algorithm for Enhanced Electrocardiogram Analysis through
  R-Peak Alignment for Explainable Classification and Clustering
The Rlign Algorithm for Enhanced Electrocardiogram Analysis through R-Peak Alignment for Explainable Classification and Clustering
Lucas Plagwitz
Lucas Bickmann
Michael Fujarski
Alexander Brenner
Warnes Gobalakrishnan
Lars Eckardt
Antonius Büscher
Julian Varghese
106
4
0
22 Jul 2024
DITTO: A Visual Digital Twin for Interventions and Temporal Treatment
  Outcomes in Head and Neck Cancer
DITTO: A Visual Digital Twin for Interventions and Temporal Treatment Outcomes in Head and Neck Cancer
A. Wentzel
Serageldin Attia
Xinhua Zhang
G. Canahuate
Clifton Fuller
G. Marai
160
8
0
18 Jul 2024
Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI
Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI
Qi Huang
Emanuele Mezzi
Osman Mutlu
Miltiadis Kofinas
Vidya Prasad
Shadnan Azwad Khan
Elena Ranguelova
Niki van Stein
246
1
0
17 Jul 2024
Geometric Remove-and-Retrain (GOAR): Coordinate-Invariant eXplainable AI
  Assessment
Geometric Remove-and-Retrain (GOAR): Coordinate-Invariant eXplainable AI Assessment
Yong-Hyun Park
Junghoon Seo
Bomseok Park
Seongsu Lee
Junghyo Jo
AAML
258
2
0
17 Jul 2024
Benchmarking the Attribution Quality of Vision Models
Benchmarking the Attribution Quality of Vision Models
Robin Hesse
Simone Schaub-Meyer
Stefan Roth
FAtt
312
4
0
16 Jul 2024
Understanding the Dependence of Perception Model Competency on Regions
  in an Image
Understanding the Dependence of Perception Model Competency on Regions in an Image
Sara Pohland
Claire Tomlin
147
2
0
15 Jul 2024
Experiments with truth using Machine Learning: Spectral analysis and
  explainable classification of synthetic, false, and genuine information
Experiments with truth using Machine Learning: Spectral analysis and explainable classification of synthetic, false, and genuine information
Vishnu S Pendyala
Madhulika Dutta
137
0
0
07 Jul 2024
PoPreRo: A New Dataset for Popularity Prediction of Romanian Reddit
  Posts
PoPreRo: A New Dataset for Popularity Prediction of Romanian Reddit Posts
Ana-Cristina Rogoz
Maria Ilinca Nechita
Radu Tudor Ionescu
191
0
0
05 Jul 2024
IDT: Dual-Task Adversarial Attacks for Privacy Protection
IDT: Dual-Task Adversarial Attacks for Privacy Protection
Pedro Faustini
Shakila Mahjabin Tonni
Annabelle McIver
Xingliang Yuan
Mark Dras
SILMAAML
186
0
0
28 Jun 2024
Efficient and Accurate Explanation Estimation with Distribution Compression
Efficient and Accurate Explanation Estimation with Distribution Compression
Hubert Baniecki
Giuseppe Casalicchio
Bernd Bischl
Przemyslaw Biecek
FAtt
326
4
0
26 Jun 2024
CLEAR: Can Language Models Really Understand Causal Graphs?
CLEAR: Can Language Models Really Understand Causal Graphs?
Sirui Chen
Mengying Xu
Kun Wang
Xingyu Zeng
Rui Zhao
Shengjie Zhao
Chaochao Lu
LRMELM
219
13
0
24 Jun 2024
MOUNTAINEER: Topology-Driven Visual Analytics for Comparing Local
  Explanations
MOUNTAINEER: Topology-Driven Visual Analytics for Comparing Local Explanations
Parikshit Solunke
Vitória Guardieiro
Joao Rulff
Peter Xenopoulos
G. Chan
Brian Barr
L. G. Nonato
Claudio Silva
184
3
0
21 Jun 2024
Improving the Evaluation and Actionability of Explanation Methods for
  Multivariate Time Series Classification
Improving the Evaluation and Actionability of Explanation Methods for Multivariate Time Series Classification
D. Serramazza
Thach le Nguyen
Georgiana Ifrim
144
4
0
18 Jun 2024
GECOBench: A Gender-Controlled Text Dataset and Benchmark for
  Quantifying Biases in Explanations
GECOBench: A Gender-Controlled Text Dataset and Benchmark for Quantifying Biases in Explanations
Rick Wilming
Artur Dox
Hjalmar Schulz
Marta Oliveira
Benedict Clark
Stefan Haufe
231
3
0
17 Jun 2024
Challenges in explaining deep learning models for data with biological
  variation
Challenges in explaining deep learning models for data with biological variationPLoS ONE (PLoS ONE), 2024
Lenka Tětková
E. Dreier
Robin Malm
Lars Kai Hansen
AAML
188
1
0
14 Jun 2024
An Unsupervised Approach to Achieve Supervised-Level Explainability in
  Healthcare Records
An Unsupervised Approach to Achieve Supervised-Level Explainability in Healthcare Records
Joakim Edin
Maria Maistro
Lars Maaløe
Lasse Borgholt
Jakob Drachmann Havtorn
Tuukka Ruotsalo
FAtt
148
13
0
13 Jun 2024
Behavior Structformer: Learning Players Representations with Structured
  Tokenization
Behavior Structformer: Learning Players Representations with Structured Tokenization
Oleg Smirnov
Labinot Polisi
83
0
0
07 Jun 2024
Provably Better Explanations with Optimized Aggregation of Feature
  Attributions
Provably Better Explanations with Optimized Aggregation of Feature AttributionsInternational Conference on Machine Learning (ICML), 2024
Thomas Decker
Ananta R. Bhattarai
Jindong Gu
Volker Tresp
Florian Buettner
163
6
0
07 Jun 2024
Enhancing predictive imaging biomarker discovery through treatment
  effect analysis
Enhancing predictive imaging biomarker discovery through treatment effect analysis
Shuhan Xiao
Lukas Klein
Jens Petersen
Philipp Vollmuth
Paul F. Jaeger
Klaus H. Maier-Hein
142
1
0
04 Jun 2024
CAFO: Feature-Centric Explanation on Time Series Classification
CAFO: Feature-Centric Explanation on Time Series Classification
Jaeho Kim
S. Hahn
Yoontae Hwang
Junghye Lee
Seulki Lee
AI4TS
187
2
0
03 Jun 2024
Selective Explanations
Selective Explanations
Lucas Monteiro Paes
Dennis L. Wei
Flavio du Pin Calmon
FAtt
190
1
0
29 May 2024
PureEBM: Universal Poison Purification via Mid-Run Dynamics of
  Energy-Based Models
PureEBM: Universal Poison Purification via Mid-Run Dynamics of Energy-Based Models
Omead Brandon Pooladzandi
Jeffrey Q. Jiang
Sunay Bhat
Gregory Pottie
AAML
209
0
0
28 May 2024
PureGen: Universal Data Purification for Train-Time Poison Defense via
  Generative Model Dynamics
PureGen: Universal Data Purification for Train-Time Poison Defense via Generative Model Dynamics
Sunay Bhat
Jeffrey Q. Jiang
Omead Brandon Pooladzandi
Alexander Branch
Gregory Pottie
AAML
276
3
0
28 May 2024
What is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence
  Functions
What is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence Functions
Sang Keun Choe
Hwijeen Ahn
Juhan Bae
Kewen Zhao
Minsoo Kang
...
Teruko Mitamura
Jeff Schneider
Eduard Hovy
Roger C. Grosse
Eric Xing
TDI
223
71
0
22 May 2024
Enhancing Explainable AI: A Hybrid Approach Combining GradCAM and LRP
  for CNN Interpretability
Enhancing Explainable AI: A Hybrid Approach Combining GradCAM and LRP for CNN Interpretability
Vaibhav Dhore
Achintya Bhat
Viraj Nerlekar
Kashyap Chavhan
Aniket Umare
FAtt
161
10
0
20 May 2024
EXACT: Towards a platform for empirically benchmarking Machine Learning
  model explanation methods
EXACT: Towards a platform for empirically benchmarking Machine Learning model explanation methods
Benedict Clark
Rick Wilming
Artur Dox
Paul Eschenbach
Sami Hached
...
Hjalmar Schulz
Luca Matteo Cornils
Danny Panknin
Ahcène Boubekki
Stefan Haufe
116
2
0
20 May 2024
Previous
123456789
Next