ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.11243
  4. Cited By
Tasks, stability, architecture, and compute: Training more effective
  learned optimizers, and using them to train themselves

Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves

23 September 2020
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
ArXivPDFHTML

Papers citing "Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves"

50 / 52 papers shown
Title
Phoeni6: a Systematic Approach for Evaluating the Energy Consumption of Neural Networks
Phoeni6: a Systematic Approach for Evaluating the Energy Consumption of Neural Networks
Antônio Oliveira-Filho
Wellington Silva-de-Souza
Carlos Alberto Valderrama Sakuyama
Samuel Xavier-de-Souza
63
0
0
25 Feb 2025
Learning Versatile Optimizers on a Compute Diet
Learning Versatile Optimizers on a Compute Diet
A. Moudgil
Boris Knyazev
Guillaume Lajoie
Eugene Belilovsky
126
0
0
22 Jan 2025
Meta-Sparsity: Learning Optimal Sparse Structures in Multi-task Networks through Meta-learning
Meta-Sparsity: Learning Optimal Sparse Structures in Multi-task Networks through Meta-learning
Richa Upadhyay
Ronald Phlypo
Rajkumar Saini
Marcus Liwicki
35
0
0
21 Jan 2025
Data Selection via Optimal Control for Language Models
Data Selection via Optimal Control for Language Models
Yuxian Gu
Li Dong
Hongning Wang
Y. Hao
Qingxiu Dong
Furu Wei
Minlie Huang
AI4CE
50
4
0
09 Oct 2024
Narrowing the Focus: Learned Optimizers for Pretrained Models
Narrowing the Focus: Learned Optimizers for Pretrained Models
Gus Kristiansen
Mark Sandler
A. Zhmoginov
Nolan Miller
Anirudh Goyal
Jihwan Lee
Max Vladymyrov
34
1
0
17 Aug 2024
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Alexander David Goldie
Chris Xiaoxuan Lu
Matthew Jackson
Shimon Whiteson
Jakob N. Foerster
40
3
0
09 Jul 2024
Implicit Neural Image Field for Biological Microscopy Image Compression
Implicit Neural Image Field for Biological Microscopy Image Compression
Gaole Dai
Cheng-Ching Tseng
Qingpo Wuwu
Rongyu Zhang
Shaokang Wang
...
Yu Zhou
A. A. Tuz
Matthias Gunzer
Jianxu Chen
Shanghang Zhang
25
1
0
29 May 2024
Graph Neural Networks for Learning Equivariant Representations of Neural
  Networks
Graph Neural Networks for Learning Equivariant Representations of Neural Networks
Miltiadis Kofinas
Boris Knyazev
Yan Zhang
Yunlu Chen
Gertjan J. Burghouts
E. Gavves
Cees G. M. Snoek
David W. Zhang
44
29
0
18 Mar 2024
Dynamic Memory Based Adaptive Optimization
Dynamic Memory Based Adaptive Optimization
Balázs Szegedy
Domonkos Czifra
Péter Korösi-Szabó
ODL
27
0
0
23 Feb 2024
Moco: A Learnable Meta Optimizer for Combinatorial Optimization
Moco: A Learnable Meta Optimizer for Combinatorial Optimization
Tim Dernedde
Daniela Thyssens
Soren Dittrich
Maximilan Stubbemann
Lars Schmidt-Thieme
49
5
0
07 Feb 2024
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
Kaan Ozkara
Can Karakus
Parameswaran Raman
Mingyi Hong
Shoham Sabach
B. Kveton
V. Cevher
19
2
0
17 Jan 2024
Investigation into the Training Dynamics of Learned Optimizers
Investigation into the Training Dynamics of Learned Optimizers
Jan Sobotka
Petr Simánek
Daniel Vasata
26
0
0
12 Dec 2023
Can We Learn Communication-Efficient Optimizers?
Can We Learn Communication-Efficient Optimizers?
Charles-Étienne Joseph
Benjamin Thérien
A. Moudgil
Boris Knyazev
Eugene Belilovsky
26
1
0
02 Dec 2023
Generalisable Agents for Neural Network Optimisation
Generalisable Agents for Neural Network Optimisation
Kale-ab Tessera
C. Tilbury
Sasha Abramowitz
Ruan de Kock
Omayma Mahjoub
Benjamin Rosman
Sara Hooker
Arnu Pretorius
AI4CE
20
0
0
30 Nov 2023
Prompt Engineering a Prompt Engineer
Prompt Engineering a Prompt Engineer
Qinyuan Ye
Maxamed Axmed
Reid Pryzant
Fereshte Khani
VLM
LLMAG
LRM
27
28
0
09 Nov 2023
Deep Model Predictive Optimization
Deep Model Predictive Optimization
Jacob Sacks
Rwik Rana
Kevin Huang
Alex Spitzer
Guanya Shi
Byron Boots
32
7
0
06 Oct 2023
Advances and Challenges in Meta-Learning: A Technical Review
Advances and Challenges in Meta-Learning: A Technical Review
Anna Vettoruzzo
Mohamed-Rafik Bouguelia
Joaquin Vanschoren
Thorsteinn Rögnvaldsson
K. Santosh
OffRL
19
70
0
10 Jul 2023
Towards Constituting Mathematical Structures for Learning to Optimize
Towards Constituting Mathematical Structures for Learning to Optimize
Jialin Liu
Xiaohan Chen
Zhangyang Wang
W. Yin
HanQin Cai
26
12
0
29 May 2023
HUB: Guiding Learned Optimizers with Continuous Prompt Tuning
Gaole Dai
Wei Yu Wu
Ziyu Wang
Jie Fu
Shanghang Zhang
Tiejun Huang
AIFin
14
0
0
26 May 2023
Low-Variance Gradient Estimation in Unrolled Computation Graphs with
  ES-Single
Low-Variance Gradient Estimation in Unrolled Computation Graphs with ES-Single
Paul Vicol
Zico Kolter
Kevin Swersky
13
6
0
21 Apr 2023
Discovering Attention-Based Genetic Algorithms via Meta-Black-Box
  Optimization
Discovering Attention-Based Genetic Algorithms via Meta-Black-Box Optimization
R. T. Lange
Tom Schaul
Yutian Chen
Chris Xiaoxuan Lu
Tom Zahavy
Valentin Dalibard
Sebastian Flennerhag
24
34
0
08 Apr 2023
Learning to Optimize for Reinforcement Learning
Learning to Optimize for Reinforcement Learning
Qingfeng Lan
Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
OffRL
24
6
0
03 Feb 2023
Mnemosyne: Learning to Train Transformers with Transformers
Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain
K. Choromanski
Kumar Avinava Dubey
Sumeet Singh
Vikas Sindhwani
Tingnan Zhang
Jie Tan
OffRL
31
9
0
02 Feb 2023
General-Purpose In-Context Learning by Meta-Learning Transformers
General-Purpose In-Context Learning by Meta-Learning Transformers
Louis Kirsch
James Harrison
Jascha Narain Sohl-Dickstein
Luke Metz
29
72
0
08 Dec 2022
Transformer-Based Learned Optimization
Transformer-Based Learned Optimization
Erik Gartner
Luke Metz
Mykhaylo Andriluka
C. Freeman
C. Sminchisescu
16
11
0
02 Dec 2022
Learning to Optimize with Dynamic Mode Decomposition
Learning to Optimize with Dynamic Mode Decomposition
Petr Simánek
Daniel Vasata
Pavel Kordík
31
5
0
29 Nov 2022
A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
  Iterative Algorithms
A Recursively Recurrent Neural Network (R2N2) Architecture for Learning Iterative Algorithms
Danimir T. Doncevic
Alexander Mitsos
Yu Guo
Qianxiao Li
Felix Dietrich
Manuel Dahmen
Ioannis G. Kevrekidis
11
7
0
22 Nov 2022
Discovering Evolution Strategies via Meta-Black-Box Optimization
Discovering Evolution Strategies via Meta-Black-Box Optimization
R. T. Lange
Tom Schaul
Yutian Chen
Tom Zahavy
Valenti Dallibard
Chris Xiaoxuan Lu
Satinder Singh
Sebastian Flennerhag
36
47
0
21 Nov 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
24
60
0
17 Nov 2022
Empirical Study on Optimizer Selection for Out-of-Distribution
  Generalization
Empirical Study on Optimizer Selection for Out-of-Distribution Generalization
Hiroki Naganuma
Kartik Ahuja
S. Takagi
Tetsuya Motokawa
Rio Yokota
Kohta Ishikawa
I. Sato
Ioannis Mitliagkas
OOD
11
7
0
15 Nov 2022
Learning to Optimize Quasi-Newton Methods
Learning to Optimize Quasi-Newton Methods
Isaac Liao
Rumen Dangovski
Jakob N. Foerster
Marin Soljacic
36
4
0
11 Oct 2022
A Closer Look at Learned Optimization: Stability, Robustness, and
  Inductive Biases
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
44
22
0
22 Sep 2022
Automated Dynamic Algorithm Configuration
Automated Dynamic Algorithm Configuration
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Frank Hutter
27
36
0
27 May 2022
Practical tradeoffs between memory, compute, and performance in learned
  optimizers
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
33
32
0
22 Mar 2022
A Simple Guard for Learned Optimizers
A Simple Guard for Learned Optimizers
Isabeau Prémont-Schwarz
Jaroslav Vítkru
Jan Feyereisl
43
7
0
28 Jan 2022
Unbiased Gradient Estimation in Unrolled Computation Graphs with
  Persistent Evolution Strategies
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
14
67
0
27 Dec 2021
Efficient Meta Subspace Optimization
Efficient Meta Subspace Optimization
Yoni Choukroun
Michael Katz
15
1
0
28 Oct 2021
Parameter Prediction for Unseen Deep Architectures
Parameter Prediction for Unseen Deep Architectures
Boris Knyazev
M. Drozdzal
Graham W. Taylor
Adriana Romero Soriano
OOD
22
78
0
25 Oct 2021
Learn2Hop: Learned Optimization on Rough Landscapes
Learn2Hop: Learned Optimization on Rough Landscapes
Amil Merchant
Luke Metz
S. Schoenholz
E. D. Cubuk
15
16
0
20 Jul 2021
Memory Augmented Optimizers for Deep Learning
Memory Augmented Optimizers for Deep Learning
Paul-Aymeric McRae
Prasanna Parthasarathi
Mahmoud Assran
Sarath Chandar
ODL
17
3
0
20 Jun 2021
A Generalizable Approach to Learning Optimizers
A Generalizable Approach to Learning Optimizers
Diogo Almeida
Clemens Winter
Jie Tang
Wojciech Zaremba
AI4CE
19
29
0
02 Jun 2021
Meta-Learning Bidirectional Update Rules
Meta-Learning Bidirectional Update Rules
Mark Sandler
Max Vladymyrov
A. Zhmoginov
Nolan Miller
Andrew Jackson
T. Madams
Blaise Agüera y Arcas
11
15
0
10 Apr 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
30
225
0
23 Mar 2021
Meta Learning Black-Box Population-Based Optimizers
Meta Learning Black-Box Population-Based Optimizers
H. Gomes
B. Léger
Christian Gagné
11
12
0
05 Mar 2021
Training Learned Optimizers with Randomly Initialized Learned Optimizers
Training Learned Optimizers with Randomly Initialized Learned Optimizers
Luke Metz
C. Freeman
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
41
12
0
14 Jan 2021
Meta Learning Backpropagation And Improving It
Meta Learning Backpropagation And Improving It
Louis Kirsch
Jürgen Schmidhuber
40
56
0
29 Dec 2020
Reverse engineering learned optimizers reveals known and novel
  mechanisms
Reverse engineering learned optimizers reveals known and novel mechanisms
Niru Maheswaranathan
David Sussillo
Luke Metz
Ruoxi Sun
Jascha Narain Sohl-Dickstein
6
21
0
04 Nov 2020
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
33
266
0
08 Jul 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
38
1,926
0
11 Apr 2020
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
99
716
0
13 Jun 2018
12
Next