Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.12562
Cited By
Differentially Private and Fair Deep Learning: A Lagrangian Dual Approach
26 September 2020
Cuong Tran
Ferdinando Fioretto
Pascal Van Hentenryck
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Differentially Private and Fair Deep Learning: A Lagrangian Dual Approach"
20 / 20 papers shown
Title
PFGuard: A Generative Framework with Privacy and Fairness Safeguards
Soyeon Kim
Yuji Roh
Geon Heo
Steven Euijong Whang
44
0
0
03 Oct 2024
Near-Optimal Solutions of Constrained Learning Problems
Juan Elenter
Luiz F. O. Chamon
Alejandro Ribeiro
26
5
0
18 Mar 2024
Data-Agnostic Model Poisoning against Federated Learning: A Graph Autoencoder Approach
Kai Li
Jingjing Zheng
Xinnan Yuan
W. Ni
Ozgur B. Akan
H. Vincent Poor
AAML
32
15
0
30 Nov 2023
Resilient Constrained Learning
Ignacio Hounie
Alejandro Ribeiro
Luiz F. O. Chamon
37
10
0
04 Jun 2023
On the Fairness Impacts of Private Ensembles Models
Cuong Tran
Ferdinando Fioretto
43
4
0
19 May 2023
Learning with Impartiality to Walk on the Pareto Frontier of Fairness, Privacy, and Utility
Mohammad Yaghini
Patty Liu
Franziska Boenisch
Nicolas Papernot
FedML
FaML
46
8
0
17 Feb 2023
Unraveling Privacy Risks of Individual Fairness in Graph Neural Networks
He Zhang
Xingliang Yuan
Shirui Pan
63
11
0
30 Jan 2023
Fairly Private: Investigating The Fairness of Visual Privacy Preservation Algorithms
Sophie Noiret
Siddharth Ravi
M. Kampel
Francisco Flórez-Revuelta
PICV
14
1
0
12 Jan 2023
The intersection of machine learning with forecasting and optimisation: theory and applications
M. Abolghasemi
34
2
0
24 Nov 2022
Fairness Increases Adversarial Vulnerability
Cuong Tran
Keyu Zhu
Ferdinando Fioretto
Pascal Van Hentenryck
36
6
0
21 Nov 2022
Differential Privacy has Bounded Impact on Fairness in Classification
Paul Mangold
Michaël Perrot
A. Bellet
Marc Tommasi
41
17
0
28 Oct 2022
Disparate Impact in Differential Privacy from Gradient Misalignment
Maria S. Esipova
Atiyeh Ashari Ghomi
Yaqiao Luo
Jesse C. Cresswell
29
26
0
15 Jun 2022
Differential Privacy and Fairness in Decisions and Learning Tasks: A Survey
Ferdinando Fioretto
Cuong Tran
Pascal Van Hentenryck
Keyu Zhu
FaML
37
61
0
16 Feb 2022
Equity and Privacy: More Than Just a Tradeoff
David Pujol
Ashwin Machanavajjhala
40
15
0
08 Nov 2021
Robin Hood and Matthew Effects: Differential Privacy Has Disparate Impact on Synthetic Data
Georgi Ganev
Bristena Oprisanu
Emiliano De Cristofaro
46
56
0
23 Sep 2021
A Fairness Analysis on Private Aggregation of Teacher Ensembles
Cuong Tran
M. H. Dinh
Kyle Beiter
Ferdinando Fioretto
29
12
0
17 Sep 2021
Enforcing fairness in private federated learning via the modified method of differential multipliers
Borja Rodríguez Gálvez
Filip Granqvist
Rogier van Dalen
M. Seigel
FedML
48
53
0
17 Sep 2021
Federated Learning Meets Fairness and Differential Privacy
P. Manisha
Sankarshan Damle
Sujit Gujar
FedML
38
21
0
23 Aug 2021
On the Privacy Risks of Algorithmic Fairness
Hong Chang
Reza Shokri
FaML
38
110
0
07 Nov 2020
Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods
Ferdinando Fioretto
Terrence W.K. Mak
Pascal Van Hentenryck
AI4CE
81
199
0
19 Sep 2019
1