ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.12789
  4. Cited By
Learning Optimal Representations with the Decodable Information
  Bottleneck

Learning Optimal Representations with the Decodable Information Bottleneck

27 September 2020
Yann Dubois
Douwe Kiela
D. Schwab
Ramakrishna Vedantam
ArXivPDFHTML

Papers citing "Learning Optimal Representations with the Decodable Information Bottleneck"

14 / 14 papers shown
Title
Generalization Guarantees for Multi-View Representation Learning and Application to Regularization via Gaussian Product Mixture Prior
Generalization Guarantees for Multi-View Representation Learning and Application to Regularization via Gaussian Product Mixture Prior
Milad Sefidgaran
Abdellatif Zaidi
Piotr Krasnowski
44
0
0
25 Apr 2025
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Milad Sefidgaran
A. Zaidi
Piotr Krasnowski
88
1
0
21 Feb 2025
MLEM: Generative and Contrastive Learning as Distinct Modalities for
  Event Sequences
MLEM: Generative and Contrastive Learning as Distinct Modalities for Event Sequences
Viktor Moskvoretskii
Dmitry Osin
Egor Shvetsov
Igor Udovichenko
Maxim Zhelnin
Andrey Dukhovny
Anna Zhimerikina
E. Burnaev
AI4TS
25
2
0
29 Jan 2024
Elastic Information Bottleneck
Elastic Information Bottleneck
Yuyan Ni
Yanyan Lan
Ao Liu
Zhiming Ma
22
2
0
07 Nov 2023
Data-Efficient Protein 3D Geometric Pretraining via Refinement of
  Diffused Protein Structure Decoy
Data-Efficient Protein 3D Geometric Pretraining via Refinement of Diffused Protein Structure Decoy
Yufei Huang
Lirong Wu
Haitao Lin
Jiangbin Zheng
Ge Wang
Stan Z. Li
DiffM
24
14
0
05 Feb 2023
SynBench: Task-Agnostic Benchmarking of Pretrained Representations using
  Synthetic Data
SynBench: Task-Agnostic Benchmarking of Pretrained Representations using Synthetic Data
Ching-Yun Ko
Pin-Yu Chen
Jeet Mohapatra
Payel Das
Lucani E. Daniel
19
3
0
06 Oct 2022
Gacs-Korner Common Information Variational Autoencoder
Gacs-Korner Common Information Variational Autoencoder
Michael Kleinman
Alessandro Achille
Stefano Soatto
J. Kao
CML
DRL
24
12
0
24 May 2022
Empirical Evaluation and Theoretical Analysis for Representation
  Learning: A Survey
Empirical Evaluation and Theoretical Analysis for Representation Learning: A Survey
Kento Nozawa
Issei Sato
AI4TS
19
4
0
18 Apr 2022
Optimal Representations for Covariate Shift
Optimal Representations for Covariate Shift
Yangjun Ruan
Yann Dubois
Chris J. Maddison
OOD
22
68
0
31 Dec 2021
Graph Structure Learning with Variational Information Bottleneck
Graph Structure Learning with Variational Information Bottleneck
Qingyun Sun
Jianxin Li
Hao Peng
Jia Wu
Xingcheng Fu
Cheng Ji
Philip S. Yu
39
153
0
16 Dec 2021
Reducing Information Bottleneck for Weakly Supervised Semantic
  Segmentation
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation
Jungbeom Lee
Jooyoung Choi
J. Mok
Sungroh Yoon
SSeg
218
134
0
13 Oct 2021
Usable Information and Evolution of Optimal Representations During
  Training
Usable Information and Evolution of Optimal Representations During Training
Michael Kleinman
Alessandro Achille
Daksh Idnani
J. Kao
21
13
0
06 Oct 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
281
2,888
0
15 Sep 2016
Norm-Based Capacity Control in Neural Networks
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
119
577
0
27 Feb 2015
1