Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.13291
Cited By
Physics Informed Neural Networks for Simulating Radiative Transfer
25 September 2020
Siddhartha Mishra
Roberto Molinaro
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics Informed Neural Networks for Simulating Radiative Transfer"
13 / 13 papers shown
Title
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
24
2
0
04 Oct 2024
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
45
6
0
07 May 2024
Macroscopic auxiliary asymptotic preserving neural networks for the linear radiative transfer equations
Hongyan Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
27
2
0
04 Mar 2024
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
29
20
0
03 Mar 2023
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
24
17
0
27 Oct 2022
Physics-constrained Unsupervised Learning of Partial Differential Equations using Meshes
M. Michelis
Robert K. Katzschmann
AI4CE
27
1
0
30 Mar 2022
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
27
115
0
17 Mar 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,179
0
14 Jan 2022
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
11
100
0
28 Jun 2021
Machine learning moment closure models for the radiative transfer equation I: directly learning a gradient based closure
Juntao Huang
Yingda Cheng
Andrew J. Christlieb
L. Roberts
AI4CE
13
26
0
12 May 2021
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
21
137
0
18 Apr 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
180
759
0
13 Mar 2020
1