ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.13291
  4. Cited By
Physics Informed Neural Networks for Simulating Radiative Transfer

Physics Informed Neural Networks for Simulating Radiative Transfer

25 September 2020
Siddhartha Mishra
Roberto Molinaro
    PINN
ArXivPDFHTML

Papers citing "Physics Informed Neural Networks for Simulating Radiative Transfer"

13 / 13 papers shown
Title
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
24
2
0
04 Oct 2024
Unveiling the optimization process of Physics Informed Neural Networks:
  How accurate and competitive can PINNs be?
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
45
6
0
07 May 2024
Macroscopic auxiliary asymptotic preserving neural networks for the
  linear radiative transfer equations
Macroscopic auxiliary asymptotic preserving neural networks for the linear radiative transfer equations
Hongyan Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
27
2
0
04 Mar 2024
Error convergence and engineering-guided hyperparameter search of PINNs:
  towards optimized I-FENN performance
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
29
20
0
03 Mar 2023
Partial Differential Equations Meet Deep Neural Networks: A Survey
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
24
17
0
27 Oct 2022
Physics-constrained Unsupervised Learning of Partial Differential
  Equations using Meshes
Physics-constrained Unsupervised Learning of Partial Differential Equations using Meshes
M. Michelis
Robert K. Katzschmann
AI4CE
27
1
0
30 Mar 2022
Error estimates for physics informed neural networks approximating the
  Navier-Stokes equations
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
27
115
0
17 Mar 2022
Scientific Machine Learning through Physics-Informed Neural Networks:
  Where we are and What's next
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,179
0
14 Jan 2022
Error analysis for physics informed neural networks (PINNs)
  approximating Kolmogorov PDEs
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
11
100
0
28 Jun 2021
Machine learning moment closure models for the radiative transfer
  equation I: directly learning a gradient based closure
Machine learning moment closure models for the radiative transfer equation I: directly learning a gradient based closure
Juntao Huang
Yingda Cheng
Andrew J. Christlieb
L. Roberts
AI4CE
13
26
0
12 May 2021
On the approximation of functions by tanh neural networks
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
21
137
0
18 Apr 2021
An overview on deep learning-based approximation methods for partial
  differential equations
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
180
759
0
13 Mar 2020
1