ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.13636
  4. Cited By
A General Bayesian Model for Heteroskedastic Data with Fully Conjugate
  Full-Conditional Distributions

A General Bayesian Model for Heteroskedastic Data with Fully Conjugate Full-Conditional Distributions

28 September 2020
Paul A. Parker
S. Holan
S. Wills
ArXiv (abs)PDFHTML

Papers citing "A General Bayesian Model for Heteroskedastic Data with Fully Conjugate Full-Conditional Distributions"

3 / 3 papers shown
Title
Quantifying predictive uncertainty of aphasia severity in stroke
  patients with sparse heteroscedastic Bayesian high-dimensional regression
Quantifying predictive uncertainty of aphasia severity in stroke patients with sparse heteroscedastic Bayesian high-dimensional regression
A. Zgodic
Ray Bai
Jiajia Zhang
Yuan Wang
Chris Rorden
Alexander C. McLain
115
0
0
15 Sep 2023
Statistical Deep Learning for Spatial and Spatio-Temporal Data
Statistical Deep Learning for Spatial and Spatio-Temporal Data
C. Wikle
A. Zammit‐Mangion
BDL
154
50
0
05 Jun 2022
Generating Independent Replicates Directly from the Posterior
  Distribution for a Class of Spatial Latent Gaussian Process Models
Generating Independent Replicates Directly from the Posterior Distribution for a Class of Spatial Latent Gaussian Process Models
J. Bradley
Madelyn Clinch
92
0
0
18 Mar 2022
1