ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01118
  4. Cited By
Gaussian Process Molecule Property Prediction with FlowMO
v1v2 (latest)

Gaussian Process Molecule Property Prediction with FlowMO

2 October 2020
Henry B. Moss
Ryan-Rhys Griffiths
ArXiv (abs)PDFHTML

Papers citing "Gaussian Process Molecule Property Prediction with FlowMO"

18 / 18 papers shown
Title
A decoupled alignment kernel for peptide membrane permeability predictions
A decoupled alignment kernel for peptide membrane permeability predictions
Ali Amirahmadi
Gökçe Geylan
Leonardo De Maria
Farzaneh Etminani
Mattias Ohlsson
Alessandro Tibo
226
0
0
26 Nov 2025
Hash Collisions in Molecular Fingerprints: Effects on Property Prediction and Bayesian Optimization
Hash Collisions in Molecular Fingerprints: Effects on Property Prediction and Bayesian Optimization
Walter Virany
Austin Tripp
29
0
0
21 Nov 2025
Ranking over Regression for Bayesian Optimization and Molecule Selection
Ranking over Regression for Bayesian Optimization and Molecule SelectionAPL Machine Learning (AML), 2024
Gary Tom
Stanley Lo
Samantha Corapi
Alán Aspuru-Guzik
Benjamín Sánchez-Lengeling
BDL
155
5
0
11 Oct 2024
Be aware of overfitting by hyperparameter optimization!
Be aware of overfitting by hyperparameter optimization!
Igor V. Tetko
R. V. Deursen
Guillaume Godin
AI4CE
214
24
0
30 Jul 2024
A Gaussian Process Model for Ordinal Data with Applications to
  Chemoinformatics
A Gaussian Process Model for Ordinal Data with Applications to Chemoinformatics
Arron Gosnell
Evangelos A. Evangelou
106
2
0
16 May 2024
Simulation Based Bayesian Optimization
Simulation Based Bayesian Optimization
Roi Naveiro
Becky Tang
219
1
0
19 Jan 2024
GFlowNets for AI-Driven Scientific Discovery
GFlowNets for AI-Driven Scientific DiscoveryDigital Discovery (DD), 2023
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
264
74
0
01 Feb 2023
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian OptimisationInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Henry B. Moss
Sebastian W. Ober
Victor Picheny
304
33
0
24 Jan 2023
GAUCHE: A Library for Gaussian Processes in Chemistry
GAUCHE: A Library for Gaussian Processes in ChemistryNeural Information Processing Systems (NeurIPS), 2022
Ryan-Rhys Griffiths
Leo Klarner
Henry B. Moss
Aditya Ravuri
Sang T. Truong
...
A. Lee
Bingqing Cheng
Alán Aspuru-Guzik
P. Schwaller
Jian Tang
GP
323
54
0
06 Dec 2022
Calibration and generalizability of probabilistic models on low-data
  chemical datasets with DIONYSUS
Calibration and generalizability of probabilistic models on low-data chemical datasets with DIONYSUSDigital Discovery (DD), 2022
Gary Tom
Riley J. Hickman
Aniket N. Zinzuwadia
A. Mohajeri
Benjamín Sánchez-Lengeling
A. Aspuru‐Guzik
172
22
0
03 Dec 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization
  over Combinatorial Spaces
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial SpacesNeural Information Processing Systems (NeurIPS), 2021
Aryan Deshwal
J. Doppa
BDL
239
54
0
01 Nov 2021
High-Dimensional Bayesian Optimisation with Variational Autoencoders and
  Deep Metric Learning
High-Dimensional Bayesian Optimisation with Variational Autoencoders and Deep Metric Learning
Antoine Grosnit
Rasul Tutunov
A. Maraval
Ryan-Rhys Griffiths
Alexander I. Cowen-Rivers
...
Wenlong Lyu
Zhitang Chen
Jun Wang
Jan Peters
Haitham Bou-Ammar
BDLDRL
208
71
0
07 Jun 2021
Assigning Confidence to Molecular Property Prediction
Assigning Confidence to Molecular Property PredictionExpert Opinion on Drug Discovery (EODD), 2021
AkshatKumar Nigam
R. Pollice
Matthew F. D. Hurley
Riley J. Hickman
Matteo Aldeghi
Naruki Yoshikawa
Seyone Chithrananda
Vincent A. Voelz
Alán Aspuru-Guzik
AI4CE
223
50
0
23 Feb 2021
GIBBON: General-purpose Information-Based Bayesian OptimisatioN
GIBBON: General-purpose Information-Based Bayesian OptimisatioNJournal of machine learning research (JMLR), 2021
Henry B. Moss
David S. Leslie
Javier I. González
Paul Rayson
152
50
0
05 Feb 2021
Are we Forgetting about Compositional Optimisers in Bayesian
  Optimisation?
Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?Journal of machine learning research (JMLR), 2020
Antoine Grosnit
Alexander I. Cowen-Rivers
Rasul Tutunov
Ryan-Rhys Griffiths
Jun Wang
Haitham Bou-Ammar
179
16
0
15 Dec 2020
Data-Driven Discovery of Molecular Photoswitches with Multioutput Gaussian Processes
Ryan-Rhys Griffiths
Jake L. Greenfield
Aditya R. Thawani
Arian R. Jamasb
Henry B. Moss
Anthony Bourached
Penelope Jones
William McCorkindale
Alexander A. Aldrick
Matthew J. Fuchter Alpha A. Lee
256
18
0
28 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
364
35
0
09 Jun 2020
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic
  Bayesian Optimisation
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic Bayesian Optimisation
Ryan-Rhys Griffiths
Alexander A. Aldrick
Miguel García-Ortegón
Vidhi R. Lalchand
A. Lee
228
42
0
17 Oct 2019
1