Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.01618
Cited By
A Modular Analysis of Provable Acceleration via Polyak's Momentum: Training a Wide ReLU Network and a Deep Linear Network
4 October 2020
Jun-Kun Wang
Chi-Heng Lin
Jacob D. Abernethy
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Modular Analysis of Provable Acceleration via Polyak's Momentum: Training a Wide ReLU Network and a Deep Linear Network"
9 / 9 papers shown
Title
A Nonstochastic Control Approach to Optimization
Xinyi Chen
Elad Hazan
49
5
0
19 Jan 2023
Towards Understanding GD with Hard and Conjugate Pseudo-labels for Test-Time Adaptation
Jun-Kun Wang
Andre Wibisono
37
7
0
18 Oct 2022
FedFOR: Stateless Heterogeneous Federated Learning with First-Order Regularization
Junjiao Tian
James Smith
Z. Kira
27
3
0
21 Sep 2022
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
28
8
0
19 Sep 2022
Provable Acceleration of Nesterov's Accelerated Gradient Method over Heavy Ball Method in Training Over-Parameterized Neural Networks
Xin Liu
Wei Tao
Wei Li
Dazhi Zhan
Jun Wang
Zhisong Pan
ODL
32
1
0
08 Aug 2022
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Jun-Kun Wang
Andre Wibisono
30
9
0
05 Jul 2022
Provable Acceleration of Heavy Ball beyond Quadratics for a Class of Polyak-Łojasiewicz Functions when the Non-Convexity is Averaged-Out
Jun-Kun Wang
Chi-Heng Lin
Andre Wibisono
Bin Hu
38
20
0
22 Jun 2022
A new regret analysis for Adam-type algorithms
Ahmet Alacaoglu
Yura Malitsky
P. Mertikopoulos
V. Cevher
ODL
48
42
0
21 Mar 2020
Global optimality conditions for deep neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
128
118
0
08 Jul 2017
1