Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.01736
Cited By
Geometry-aware Instance-reweighted Adversarial Training
5 October 2020
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Geometry-aware Instance-reweighted Adversarial Training"
50 / 182 papers shown
Title
Adaptive Certified Training: Towards Better Accuracy-Robustness Tradeoffs
Zhakshylyk Nurlanov
Frank R. Schmidt
Florian Bernard
OOD
24
0
0
24 Jul 2023
HybridAugment++: Unified Frequency Spectra Perturbations for Model Robustness
M. K. Yucel
R. G. Cinbis
Pinar Duygulu
AAML
38
10
0
21 Jul 2023
Towards Building More Robust Models with Frequency Bias
Qingwen Bu
Dong Huang
Heming Cui
AAML
15
10
0
19 Jul 2023
Mitigating Adversarial Vulnerability through Causal Parameter Estimation by Adversarial Double Machine Learning
Byung-Kwan Lee
Junho Kim
Yonghyun Ro
AAML
10
9
0
14 Jul 2023
Vulnerability-Aware Instance Reweighting For Adversarial Training
Olukorede Fakorede
Ashutosh Nirala
Modeste Atsague
Jin Tian
AAML
12
2
0
14 Jul 2023
Group-based Robustness: A General Framework for Customized Robustness in the Real World
Weiran Lin
Keane Lucas
Neo Eyal
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
OOD
AAML
22
1
0
29 Jun 2023
Mitigating Accuracy-Robustness Trade-off via Balanced Multi-Teacher Adversarial Distillation
Shiji Zhao
Xizhe Wang
Xingxing Wei
AAML
40
8
0
28 Jun 2023
Robust Proxy: Improving Adversarial Robustness by Robust Proxy Learning
Hong Joo Lee
Yonghyun Ro
AAML
19
3
0
27 Jun 2023
Advancing Adversarial Training by Injecting Booster Signal
Hong Joo Lee
Youngjoon Yu
Yonghyun Ro
AAML
14
3
0
27 Jun 2023
Enhancing Adversarial Training via Reweighting Optimization Trajectory
Tianjin Huang
Shiwei Liu
Tianlong Chen
Meng Fang
Lijuan Shen
Vlaod Menkovski
Lu Yin
Yulong Pei
Mykola Pechenizkiy
AAML
22
4
0
25 Jun 2023
Revisiting and Advancing Adversarial Training Through A Simple Baseline
Hong Liu
AAML
24
0
0
13 Jun 2023
Revisiting the Trade-off between Accuracy and Robustness via Weight Distribution of Filters
Xingxing Wei
Shiji Zhao
Bo li
AAML
34
4
0
06 Jun 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
34
49
0
18 May 2023
Assessing Vulnerabilities of Adversarial Learning Algorithm through Poisoning Attacks
Jingfeng Zhang
Bo Song
Bo Han
Lei Liu
Gang Niu
Masashi Sugiyama
AAML
11
2
0
30 Apr 2023
Towards Adversarially Robust Continual Learning
Tao Bai
Chen Chen
Lingjuan Lyu
Jun Zhao
B. Wen
AAML
16
8
0
31 Mar 2023
Latent Feature Relation Consistency for Adversarial Robustness
Xingbin Liu
Huafeng Kuang
Hong Liu
Xianming Lin
Yongjian Wu
Rongrong Ji
AAML
16
3
0
29 Mar 2023
CFA: Class-wise Calibrated Fair Adversarial Training
Zeming Wei
Yifei Wang
Yiwen Guo
Yisen Wang
AAML
42
49
0
25 Mar 2023
Improved Adversarial Training Through Adaptive Instance-wise Loss Smoothing
Lin Li
Michael W. Spratling
AAML
59
4
0
24 Mar 2023
PIAT: Parameter Interpolation based Adversarial Training for Image Classification
Kun He
Xin Liu
Yichen Yang
Zhou Qin
Weigao Wen
Hui Xue
J. Hopcroft
AAML
22
0
0
24 Mar 2023
Bridging Optimal Transport and Jacobian Regularization by Optimal Trajectory for Enhanced Adversarial Defense
B. Le
Shahroz Tariq
Simon S. Woo
AAML
21
0
0
21 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
36
34
0
19 Mar 2023
Certified Robust Neural Networks: Generalization and Corruption Resistance
Amine Bennouna
Ryan Lucas
Bart P. G. Van Parys
30
10
0
03 Mar 2023
Combating Exacerbated Heterogeneity for Robust Models in Federated Learning
Jianing Zhu
Jiangchao Yao
Tongliang Liu
Quanming Yao
Jianliang Xu
Bo Han
FedML
35
5
0
01 Mar 2023
Delving into the Adversarial Robustness of Federated Learning
Jie M. Zhang
Bo-wen Li
Chen Chen
Lingjuan Lyu
Shuang Wu
Shouhong Ding
Chao Wu
FedML
30
34
0
19 Feb 2023
Unlabeled Imperfect Demonstrations in Adversarial Imitation Learning
Yunke Wang
Bo Du
Chang Xu
21
8
0
13 Feb 2023
Exploring and Exploiting Decision Boundary Dynamics for Adversarial Robustness
Yuancheng Xu
Yanchao Sun
Micah Goldblum
Tom Goldstein
Furong Huang
AAML
23
37
0
06 Feb 2023
Towards Estimating Transferability using Hard Subsets
Tarun Ram Menta
Surgan Jandial
A. Patil
K.U. Vimal
Saketh Bachu
Balaji Krishnamurthy
V. Balasubramanian
Chirag Agarwal
Mausoom Sarkar
15
0
0
17 Jan 2023
Understanding Difficulty-based Sample Weighting with a Universal Difficulty Measure
Xiaoling Zhou
Ou Wu
Weiyao Zhu
Ziyang Liang
25
2
0
12 Jan 2023
Phase-shifted Adversarial Training
Yeachan Kim
Seongyeon Kim
Ihyeok Seo
Bonggun Shin
AAML
OOD
24
0
0
12 Jan 2023
Data Valuation Without Training of a Model
Nohyun Ki
Hoyong Choi
Hye Won Chung
TDI
10
31
0
03 Jan 2023
Confidence-aware Training of Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Seojin Kim
Jinwoo Shin
AAML
19
7
0
18 Dec 2022
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
27
5
0
15 Dec 2022
DISCO: Adversarial Defense with Local Implicit Functions
Chih-Hui Ho
Nuno Vasconcelos
AAML
21
38
0
11 Dec 2022
Reliable Robustness Evaluation via Automatically Constructed Attack Ensembles
Shengcai Liu
Fu Peng
Ke Tang
AAML
31
11
0
23 Nov 2022
The Enemy of My Enemy is My Friend: Exploring Inverse Adversaries for Improving Adversarial Training
Junhao Dong
Seyed-Mohsen Moosavi-Dezfooli
Jianhuang Lai
Xiaohua Xie
AAML
35
28
0
01 Nov 2022
Adversarial Training with Complementary Labels: On the Benefit of Gradually Informative Attacks
Jianan Zhou
Jianing Zhu
Jingfeng Zhang
Tongliang Liu
Gang Niu
Bo Han
Masashi Sugiyama
AAML
11
9
0
01 Nov 2022
Improving Adversarial Robustness with Self-Paced Hard-Class Pair Reweighting
Peng-Fei Hou
Jie Han
Xingyu Li
AAML
OOD
16
11
0
26 Oct 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Gal Mishne
OOD
24
4
0
20 Oct 2022
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
28
24
0
12 Oct 2022
Adversarial Lagrangian Integrated Contrastive Embedding for Limited Size Datasets
Amin Jalali
Minho Lee
18
8
0
06 Oct 2022
Strength-Adaptive Adversarial Training
Chaojian Yu
Dawei Zhou
Li Shen
Jun Yu
Bo Han
Mingming Gong
Nannan Wang
Tongliang Liu
OOD
17
2
0
04 Oct 2022
Improving Robustness with Adaptive Weight Decay
Amin Ghiasi
Ali Shafahi
R. Ardekani
OOD
17
7
0
30 Sep 2022
Fair Robust Active Learning by Joint Inconsistency
Tsung-Han Wu
Hung-Ting Su
Shang-Tse Chen
Winston H. Hsu
AAML
16
1
0
22 Sep 2022
Improving Robust Fairness via Balance Adversarial Training
Chunyu Sun
Chenye Xu
Chengyuan Yao
Siyuan Liang
Yichao Wu
Ding Liang
XiangLong Liu
Aishan Liu
23
11
0
15 Sep 2022
TSFool: Crafting Highly-Imperceptible Adversarial Time Series through Multi-Objective Attack
Yanyun Wang
Dehui Du
Haibo Hu
Zi Liang
Yuanhao Liu
AAML
AI4TS
25
1
0
14 Sep 2022
Lower Difficulty and Better Robustness: A Bregman Divergence Perspective for Adversarial Training
Zihui Wu
Haichang Gao
Bingqian Zhou
Xiaoyan Guo
Shudong Zhang
AAML
15
0
0
26 Aug 2022
Attacking Adversarial Defences by Smoothing the Loss Landscape
Panagiotis Eustratiadis
H. Gouk
Da Li
Timothy M. Hospedales
AAML
14
4
0
01 Aug 2022
One-vs-the-Rest Loss to Focus on Important Samples in Adversarial Training
Sekitoshi Kanai
Shinýa Yamaguchi
Masanori Yamada
Hiroshi Takahashi
Kentaro Ohno
Yasutoshi Ida
AAML
14
7
0
21 Jul 2022
AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail Problems
Wen-ming Hou
Qianqian Xu
Zhiyong Yang
Shilong Bao
Yuan He
Qingming Huang
AAML
26
5
0
24 Jun 2022
InfoAT: Improving Adversarial Training Using the Information Bottleneck Principle
Mengting Xu
Tao Zhang
Zhongnian Li
Daoqiang Zhang
AAML
35
16
0
23 Jun 2022
Previous
1
2
3
4
Next