Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.01736
Cited By
Geometry-aware Instance-reweighted Adversarial Training
5 October 2020
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Geometry-aware Instance-reweighted Adversarial Training"
50 / 182 papers shown
Title
Diversified Adversarial Attacks based on Conjugate Gradient Method
Keiichiro Yamamura
Haruki Sato
Nariaki Tateiwa
Nozomi Hata
Toru Mitsutake
Issa Oe
Hiroki Ishikura
Katsuki Fujisawa
AAML
14
14
0
20 Jun 2022
Understanding Robust Overfitting of Adversarial Training and Beyond
Chaojian Yu
Bo Han
Li Shen
Jun Yu
Chen Gong
Mingming Gong
Tongliang Liu
OOD
9
56
0
17 Jun 2022
Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack
Ruize Gao
Jiongxiao Wang
Kaiwen Zhou
Feng Liu
Binghui Xie
Gang Niu
Bo Han
James Cheng
AAML
12
14
0
15 Jun 2022
LADDER: Latent Boundary-guided Adversarial Training
Xiaowei Zhou
Ivor W. Tsang
Jie Yin
AAML
15
6
0
08 Jun 2022
Improving Adversarial Robustness by Putting More Regularizations on Less Robust Samples
Dongyoon Yang
Insung Kong
Yongdai Kim
OOD
AAML
11
9
0
07 Jun 2022
Understanding Deep Learning via Decision Boundary
Shiye Lei
Fengxiang He
Yancheng Yuan
Dacheng Tao
17
13
0
03 Jun 2022
Adaptive Adversarial Training to Improve Adversarial Robustness of DNNs for Medical Image Segmentation and Detection
Linhai Ma
Liang Liang
OOD
19
6
0
02 Jun 2022
Attack-Agnostic Adversarial Detection
Jiaxin Cheng
Mohamed Hussein
J. Billa
Wael AbdAlmageed
AAML
15
0
0
01 Jun 2022
CalFAT: Calibrated Federated Adversarial Training with Label Skewness
Chen Chen
Yuchen Liu
Xingjun Ma
Lingjuan Lyu
FedML
161
32
0
30 May 2022
Robust Weight Perturbation for Adversarial Training
Chaojian Yu
Bo Han
Mingming Gong
Li Shen
Shiming Ge
Bo Du
Tongliang Liu
AAML
8
33
0
30 May 2022
Alleviating Robust Overfitting of Adversarial Training With Consistency Regularization
Shudong Zhang
Haichang Gao
Tianwei Zhang
Yunyi Zhou
Zihui Wu
AAML
18
3
0
24 May 2022
Squeeze Training for Adversarial Robustness
Qizhang Li
Yiwen Guo
W. Zuo
Hao Chen
OOD
34
9
0
23 May 2022
Diffusion Models for Adversarial Purification
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
195
417
0
16 May 2022
Exploring the Learning Difficulty of Data Theory and Measure
Weiyao Zhu
Ou Wu
Fengguang Su
Yingjun Deng
27
5
0
16 May 2022
Rethinking Classifier and Adversarial Attack
Youhuan Yang
Lei Sun
Leyu Dai
Song Guo
Xiuqing Mao
Xiaoqin Wang
Bayi Xu
AAML
22
0
0
04 May 2022
CE-based white-box adversarial attacks will not work using super-fitting
Youhuan Yang
Lei Sun
Leyu Dai
Song Guo
Xiuqing Mao
Xiaoqin Wang
Bayi Xu
AAML
24
0
0
04 May 2022
Enhancing Adversarial Training with Feature Separability
Yaxin Li
Xiaorui Liu
Han Xu
Wentao Wang
Jiliang Tang
AAML
GAN
10
1
0
02 May 2022
Improving robustness of language models from a geometry-aware perspective
Bin Zhu
Zhaoquan Gu
Le Wang
Jinyin Chen
Qi Xuan
AAML
11
9
0
28 Apr 2022
Measuring the False Sense of Security
Carlos Gomes
AAML
19
0
0
10 Apr 2022
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
30
15
0
05 Apr 2022
FrequencyLowCut Pooling -- Plug & Play against Catastrophic Overfitting
Julia Grabinski
Steffen Jung
J. Keuper
M. Keuper
AAML
16
22
0
01 Apr 2022
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
Paul Gavrikov
J. Keuper
AAML
16
31
0
29 Mar 2022
Robust Unlearnable Examples: Protecting Data Against Adversarial Learning
Shaopeng Fu
Fengxiang He
Yang Liu
Li Shen
Dacheng Tao
11
24
0
28 Mar 2022
Self-Ensemble Adversarial Training for Improved Robustness
Hongjun Wang
Yisen Wang
OOD
AAML
11
48
0
18 Mar 2022
LAS-AT: Adversarial Training with Learnable Attack Strategy
Xiaojun Jia
Yong Zhang
Baoyuan Wu
Ke Ma
Jue Wang
Xiaochun Cao
AAML
44
131
0
13 Mar 2022
Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack
Ye Liu
Yaya Cheng
Lianli Gao
Xianglong Liu
Qilong Zhang
Jingkuan Song
AAML
30
57
0
10 Mar 2022
Enhancing Adversarial Robustness for Deep Metric Learning
Mo Zhou
Vishal M. Patel
AAML
17
18
0
02 Mar 2022
A Unified Wasserstein Distributional Robustness Framework for Adversarial Training
Tu Bui
Trung Le
Quan Hung Tran
He Zhao
Dinh Q. Phung
AAML
OOD
31
42
0
27 Feb 2022
On the Effectiveness of Adversarial Training against Backdoor Attacks
Yinghua Gao
Dongxian Wu
Jingfeng Zhang
Guanhao Gan
Shutao Xia
Gang Niu
Masashi Sugiyama
AAML
32
22
0
22 Feb 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min-Bin Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
17
119
0
21 Feb 2022
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu (Allen) Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
77
46
0
20 Feb 2022
Adversarial Attack and Defense for Non-Parametric Two-Sample Tests
Xilie Xu
Jingfeng Zhang
Feng Liu
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
17
1
0
07 Feb 2022
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Mohammad Khalooei
M. Homayounpour
M. Amirmazlaghani
AAML
17
3
0
05 Feb 2022
Can Adversarial Training Be Manipulated By Non-Robust Features?
Lue Tao
Lei Feng
Hongxin Wei
Jinfeng Yi
Sheng-Jun Huang
Songcan Chen
AAML
67
16
0
31 Jan 2022
What You See is Not What the Network Infers: Detecting Adversarial Examples Based on Semantic Contradiction
Yijun Yang
Ruiyuan Gao
Yu Li
Qiuxia Lai
Qiang Xu
GAN
AAML
29
20
0
24 Jan 2022
Towards Adversarially Robust Deep Image Denoising
Hanshu Yan
Jingfeng Zhang
Jiashi Feng
Masashi Sugiyama
Vincent Y. F. Tan
DiffM
15
16
0
12 Jan 2022
Towards Transferable Unrestricted Adversarial Examples with Minimum Changes
Fangcheng Liu
Chaoning Zhang
Hongyang R. Zhang
AAML
23
18
0
04 Jan 2022
A Theoretical View of Linear Backpropagation and Its Convergence
Ziang Li
Yiwen Guo
Haodi Liu
Changshui Zhang
AAML
14
3
0
21 Dec 2021
Sharpness-Aware Minimization with Dynamic Reweighting
Wenxuan Zhou
Fangyu Liu
Huan Zhang
Muhao Chen
AAML
19
8
0
16 Dec 2021
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
192
345
0
15 Dec 2021
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
15
13
0
14 Dec 2021
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Shiye Lei
Zhuozhuo Tu
Leszek Rutkowski
Feng Zhou
Li Shen
Fengxiang He
Dacheng Tao
BDL
21
2
0
12 Dec 2021
Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks
Chen Ma
Xiangyu Guo
Li Chen
Junhai Yong
Yisen Wang
AAML
18
15
0
15 Nov 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
27
17
0
09 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
24
14
0
02 Nov 2021
Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided Curriculum Learning Approach
A. Sarkar
Anirban Sarkar
Sowrya Gali
V. Balasubramanian
AAML
20
7
0
30 Oct 2021
AugMax: Adversarial Composition of Random Augmentations for Robust Training
Haotao Wang
Chaowei Xiao
Jean Kossaifi
Zhiding Yu
Anima Anandkumar
Zhangyang Wang
19
106
0
26 Oct 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
20
293
0
18 Oct 2021
DI-AA: An Interpretable White-box Attack for Fooling Deep Neural Networks
Yixiang Wang
Jiqiang Liu
Xiaolin Chang
Jianhua Wang
Ricardo J. Rodríguez
AAML
17
28
0
14 Oct 2021
Parameterizing Activation Functions for Adversarial Robustness
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
AAML
42
32
0
11 Oct 2021
Previous
1
2
3
4
Next